
The Libre-SOC Hybrid 3D CPU

Augmenting the OpenPOWER ISA
to provide 3D and Video instructions

(properly and officially) and make a GPU

XDC2020

Sponsored by NLnet’s PET Programme

September 16, 2020

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Why another SoC?

I Intel Management Engine, Apple QA issues, Spectre

I Endless proprietary drivers, ”simplest” solution:
License proprietary hard macros (with proprietary firmware)
Adversely affects product development cost
due to opaque driver bugs (Samsung S3C6410 / S5P100)

I Alternative: Intel and Valve-Steam collaboration
”Most productive business meeting ever!”
https://tinyurl.com/valve-steam-intel

I Because for 30 years I Always Wanted To Design A CPU

I Ultimately it is a strategic business objective to develop
entirely Libre hardware, firmware and drivers.

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Why OpenPOWER?

I Good ecosystem essential
linux kernel, u-boot, compilers, OSes,
Reference Implementation(s)

I Supportive Foundation and Members
need to be able to submit ISA augmentations
(for proper peer review)

I No NDAs, full transparency must be acceptable
due to being funded under NLnet’s PET Programme

I OpenPOWER: established for decades, excellent Foundation,
Microwatt as Reference, approachable and friendly.

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

What goes into a typical SoC?

I 15 to 20mm BGA package: 2.5 to 5 watt power consumption
heat sink normally not required (simplifies overall design)

I Fully-integrated peripherals (not Northbridge/Southbridge)
USB, HDMI, RGB/TTL, SD/MMC, I2C, UART, SPI, GPIO
etc. etc.

I Built-in GPU (shared memory bus, 3rd party licensed)

I Build-in VPU (likewise)

I Target price between $2.50 and $30 depending on market
Radically different from IBM POWER9 Core (200 Watt)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Simple SBC-style SoC

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

What’s different about Libre-SOC?

I Hybrid - integrated. The CPU is the GPU.
The GPU is the CPU. The VPU is the CPU.
There is No Separate VPU/GPU Pipeline

I written in nmigen (a python-based HDL). Not VHDL
not Verilog (definitely not Chisel3/Scala)
This is an extremely important strategic decision.

I Simple-V Vector Extension. See ‘SIMD Considered harmful’.
https://tinyurl.com/simd-considered-harmful
SV effectively a ”hardware for-loop” on standard scalar ISA
(conceptually similar to Zero-Overhead Loops in DSPs)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Hybrid Architecture: Augmented 6600

I CDC 6600 is a design from 1965. The augmentations are not.
Help from Mitch Alsup includes precise exceptions,
multi-issue and more. Academic literature on 6600 utterly
misleading. 6600 Scoreboards completely underestimated
(Seymour Cray and James Thornton solved problems they
didn’t realise existed elsewhere!)

I Front-end Vector ISA, back-end ”Predicated (masked) SIMD”
nmigen (python OO) strategically critical to achieving this.

I Out-of-order combined with Simple-V allows scalar operations
at the developer end to be turned into SIMD at the back-end
without the developer needing to do SIMD

I IEEE754 sin / cos / atan2, Texturisation opcodes, YUV2RGB
all automatically vectorised.

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Why nmigen?

I Uses python to build an AST (Abstract Syntax Tree).
Actually hands that over to yosys (to create ILANG file) after
which verilog can (if necessary) be created

I Deterministic synthesiseable behaviour (Signals are declared
with their reset pattern: no more forgetting ”if rst” block).

I python OO programming techniques can be deployed. classes
and functions created which pass in parameters which change
what HDL is created (IEEE754 FP16 / 32 / 64 for example)

I python-based for-loops can e.g. read CSV files then generate
a hierarchical nested suite of HDL Switch / Case statements
(this is how the Libre-soc PowerISA decoder is implemented)

I extreme OO abstraction can even be used to create ”dynamic
partitioned Signals” that have the same operator-overloaded
”add”, ”subtract”, ”greater-than” operators

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Why another Vector ISA? (or: not-exactly another)

I Simple-V is a ’register tag’ system. There are no opcodes
SV ’tags’ scalar operations (scalar regfiles) as ’vectorised’

I (PowerISA SIMD is around 700 opcodes, making it unlikely to
be able to fit a PowerISA decoder in only one clock cycle)

I Effectively a ’hardware sub-counter for-loop’: pauses the PC
then rolls incrementally through the operand register numbers
issuing multiple scalar instructions into the pipelines
(hence the reason for a multi-issue OoO microarchitecture)

I Current and future PowerISA scalar opcodes inherently and
automatically become ’vectorised’ by SV without needing an
explicit new Vector opcode.

I Predication and element width polymorphism are also ’tags’.
elwidth polymorphism allows for FP16 / 80 / 128 to be added
to the ISA without modifying the ISA

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Quick refresher on SIMD

I SIMD very easy to implement (and very seductive)

I Parallelism is in the ALU

I Zero-to-Negligeable impact for rest of core

Where SIMD Goes Wrong:

I See ”SIMD instructions considered harmful”
https://sigarch.org/simd-instructions-considered-harmful

I Setup and corner-cases alone are extremely complex.
Hardware is easy, but software is hell.
strncpy VSX patch for POWER9: 250 hand-written asm lines!
(RVV / SimpleV strncpy is 14 instructions)

I O(N6) ISA opcode proliferation (1000s of instructions)
opcode, elwidth, veclen, src1-src2-dest hi/lo

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Simple-V ADD in a nutshell

function op add(rd, rs1, rs2, predr) # add not VADD!

int i, id=0, irs1=0, irs2=0;

for (i = 0; i < VL; i++)

if (ireg[predr] & 1<<i) # predication uses intregs

ireg[rd+id] <= ireg[rs1+irs1] + ireg[rs2+irs2];

if (reg is vectorised[rd]) { id += 1; }

if (reg is vectorised[rs1]) { irs1 += 1; }

if (reg is vectorised[rs2]) { irs2 += 1; }

I Above is oversimplified: Reg. indirection left out (for clarity).

I SIMD slightly more complex (case above is elwidth = default)

I Scalar-scalar and scalar-vector and vector-vector now all in one

I OoO may choose to push ADDs into instr. queue (v. busy!)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Predication-Branch (overload meaning of ”branch”)

s1 = reg is vectorised(src1);

s2 = reg is vectorised(src2);

if (!s2 && !s1) goto branch;

for (int i = 0; i < VL; ++i)

if (cmp(s1 ? reg[src1+i]:reg[src1],

s2 ? reg[src2+i]:reg[src2])

ireg[rs3] |= 1<<i;

I Above is oversimplified (case above is elwidth = default)

I If s1 and s2 both scalars, Standard branch occurs

I Predication stored in integer regfile as a bitfield

I Scalar-vector and vector-vector supported

I Overload Branch immediate to be predication target rs3

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Register element width and packed SIMD

typedef union {

uint8 t actual bytes[8]; // actual SRAM bytes

uint8 t b[]; // array of type uint8 t

uint16 t s[]; // etc

uint32 t i[];

uint64 t l[];

} reg t;

reg t int regfile[128];

I Regfile is treated (sort-of) as a byte-level SRAM

I Each ”register” starts at an 8-byte offset into SRAM

I requires byte-level ”select” lines on SRAM

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Register element width and packed SIMD

I default: elements behave as defined by the standard ISA

I override for Integer operations: 8/16/32 bit SIMD

I override for IEEE754 FP: FP16/FP32 (and later FP80 or
FP128)

I Effectively ”typecasts” regfile to union of arrays

I Does not require modification of ISA! This is ”tagging”
(similar to the ‘Mill’ ISA)

I FPADD64 RT, RA, RB becomes ‘actually please do FP16’
(but without needing to add an actual FPADD16 opcode)

I Note: no zeroing unless explicitly requested!
(unused elements e.g. VL=3 when elwidth=16 are predicated
out: int regfile[RA].s[3] is not zero’d)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Additional Simple-V features

I ”fail-on-first” (POWER9 VSX strncpy segfaults on boundary!)

I ”Twin Predication” (covers VSPLAT, VGATHER,
VSCATTER, VINDEX etc.)

I SVPrefix: 16-bit and 32-bit prefix to scalar operations
(SVP-64 allows more extensive ”tag” augmentation)

I VBLOCK: a VLIW-like context. Allows space for ‘swizzle’
tags and more. Effectively a ”hardware compression
algorithm” for ISAs.

I Ultimate goal: cut down I-Cache usage, cuts down on power

I Typical GPU has its own I-Cache and small shaders.
We are a Hybrid CPU/GPU: I-Cache is not separate!

I Needs to go through OpenPOWER Foundation ‘approval’

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Summary

I Goal is to create a mass-volume low-power embedded SoC
suitable for use in netbooks, chromebooks, tablets,
smartphones, IoT SBCs.

I No way we could implement a project of this magnitude
without nmigen (being able to use python OO to HDL)

I Collaboration with OpenPOWER Foundation and Members
absolutely essential. No short-cuts. Standards to be developed
and ratified so that everyone benefits.

I Working on the back of huge stability of POWER ecosystem

I Greatly simplified open 3D and Video drivers reduces product
development costs for customers

I It also happens to be fascinating, deeply rewarding technically
challenging, and funded by NLnet

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

The end

Thank you

Questions?

I Discussion: http://lists.libre-soc.org

I Freenode IRC #libre-soc

I http://libre-soc.org/

I http://nlnet.nl/PET

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

