The Libre-SOC Hybrid 3D CPU

Augmenting the OpenPOWER ISA
to provide 3D and Video instructions
(properly and officially) and make a GPU

XDC2020

Sponsored by NLnet's PET Programme
September 16, 2020

enneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Why another SoC?

> Intel Management Engine, Apple QA issues, Spectre

» Endless proprietary drivers, "simplest” solution:
License proprietary hard macros (with proprietary firmware)
Adversely affects product development cost
due to opaque driver bugs (Samsung S3C6410 / S5P100)

» Alternative: Intel and Valve-Steam collaboration
"Most productive business meeting ever!”
https://tinyurl.com /valve-steam-intel

> Because for 30 years | Always Wanted To Design A CPU

» Ultimately it is a strategic business objective to develop
entirely Libre hardware, firmware and drivers.

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Why OpenPOWER?

» Good ecosystem essential
linux kernel, u-boot, compilers, OSes,
Reference Implementation(s)

» Supportive Foundation and Members
need to be able to submit ISA augmentations

(for proper peer review)

» No NDAs, full transparency must be acceptable
due to being funded under NLnet's PET Programme

» OpenPOWER: established for decades, excellent Foundation,
Microwatt as Reference, approachable and friendly.

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

What goes into a typical SoC?

» 15 to 20mm BGA package: 2.5 to 5 watt power consumption
heat sink normally not required (simplifies overall design)

» Fully-integrated peripherals (not Northbridge/Southbridge)
USB, HDMI, RGB/TTL, SD/MMC, 12C, UART, SPI, GPIO
etc. etc.

» Built-in GPU (shared memory bus, 3rd party licensed)

» Build-in VPU (likewise)

» Target price between $2.50 and $30 depending on market
Radically different from IBM POWER9 Core (200 Watt)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Simple SBC-style SoC

Kazan3D:
Video Vulkan-LLVM
Processing OpenGL ES2
Blocks OpenMP

AXIl / Wishbone Bus / Bridges

[|

(]
1x FlexBus 3x PWM 2x UART (4wire)
32x EINT 1x RGMII 3x UART (2-wire)

DDR3 2x AC97/I2S 3x SDMMC 3x 12C
DDR4 1x JTAG 2X SPI
XSPI 2x RGB/TTL 1x QSPI 4-way pinmux 157 pins

1x eMMC 3x USB-ULPI 324 pins total (1x DDR)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

What's different about Libre-SOC?

» Hybrid - integrated. The CPU is the GPU.
The GPU is the CPU. The VPU is the CPU.
There is No Separate VPU/GPU Pipeline

» written in nmigen (a python-based HDL). Not VHDL
not Verilog (definitely not Chisel3/Scala)
This is an extremely important strategic decision.

» Simple-V Vector Extension. See ‘SIMD Considered harmful’.
https://tinyurl.com /simd-considered-harmful
SV effectively a "hardware for-loop” on standard scalar ISA
(conceptually similar to Zero-Overhead Loops in DSPs)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Hybrid Architecture: Augmented 6600

» CDC 6600 is a design from 1965. The augmentations are not.
Help from Mitch Alsup includes precise exceptions,
multi-issue and more. Academic literature on 6600 utterly
misleading. 6600 Scoreboards completely underestimated
(Seymour Cray and James Thornton solved problems they
didn't realise existed elsewhere!)

» Front-end Vector ISA, back-end " Predicated (masked) SIMD"
nmigen (python OO) strategically critical to achieving this.

» Out-of-order combined with Simple-V allows scalar operations
at the developer end to be turned into SIMD at the back-end
without the developer needing to do SIMD

» |IEEE754 sin / cos / atan2, Texturisation opcodes, YUV2RGB
all automatically vectorised.

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Why nmigen?

» Uses python to build an AST (Abstract Syntax Tree).
Actually hands that over to yosys (to create ILANG file) after
which verilog can (if necessary) be created

» Deterministic synthesiseable behaviour (Signals are declared
with their reset pattern: no more forgetting "if rst” block).

» python OO programming techniques can be deployed. classes
and functions created which pass in parameters which change
what HDL is created (IEEE754 FP16 / 32 / 64 for example)

> python-based for-loops can e.g. read CSV files then generate
a hierarchical nested suite of HDL Switch / Case statements
(this is how the Libre-soc PowerISA decoder is implemented)

» extreme OO abstraction can even be used to create "dynamic
partitioned Signals” that have the same operator-overloaded
"add”, "subtract”, "greater-than” operators

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Why another Vector ISA? (or: not-exactly another)

Simple-V is a 'register tag' system. There are no opcodes
SV 'tags’ scalar operations (scalar regfiles) as 'vectorised’

(PowerISA SIMD is around 700 opcodes, making it unlikely to
be able to fit a PowerlSA decoder in only one clock cycle)

Effectively a "hardware sub-counter for-loop’: pauses the PC
then rolls incrementally through the operand register numbers
issuing multiple scalar instructions into the pipelines

(hence the reason for a multi-issue OoO microarchitecture)

Current and future PowerlISA scalar opcodes inherently and
automatically become 'vectorised' by SV without needing an
explicit new Vector opcode.

Predication and element width polymorphism are also 'tags’.
elwidth polymorphism allows for FP16 / 80 / 128 to be added
to the ISA without modifying the ISA

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Quick refresher on SIMD

» SIMD very easy to implement (and very seductive)
> Parallelism is in the ALU

» Zero-to-Negligeable impact for rest of core

Where SIMD Goes Wrong:

> See "SIMD instructions considered harmful”
https://sigarch.org/simd-instructions-considered-harmful

» Setup and corner-cases alone are extremely complex.
Hardware is easy, but software is hell.
strncpy VSX patch for POWER9: 250 hand-written asm lines!
(RVV / SimpleV strncpy is 14 instructions)

» O(N®) ISA opcode proliferation (1000s of instructions)
opcode, elwidth, veclen, srcl-src2-dest hi/lo

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Simple-V ADD in a nutshell

function op_add(rd, rsl, rs2, predr) # add not VADD!
int i, id=0, irs1=0, irs2=0;
for (i = 0; 1 < VL; i++)
if (ireglpredr] & 1<<i) # predication uses intregs
ireg[rd+id] <= ireglrsil+irsl] + ireglrs2+irs2];
if (reg is_vectorised[rd]) { id += 1; }
if (reg_is_vectorised[rs1]) { irsl += 1; }
if (reg_-is_vectorised[rs2]) { irs2 += 1; }

’

» Above is oversimplified: Reg. indirection left out (for clarity).
» SIMD slightly more complex (case above is elwidth = default)
> Scalar-scalar and scalar-vector and vector-vector now all in one
» 000 may choose to push ADDs into instr. queue (v. busy!)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Predication-Branch (overload meaning of "branch”)

sl = reg_ is_vectorised(srcl);
s2 = reg is vectorised(src2);
if (!s2 && !sl1) goto branch;
for (int i = 0; i < VL; ++i)
if (cmp(sl ? reglsrci+i]:reglsrci],
s2 7 reglsrc2+i] :reglsrc2])
ireg[rs3] |= 1<<i;

v

Above is oversimplified (case above is elwidth = default)

v

If s1 and s2 both scalars, Standard branch occurs

v

Predication stored in integer regfile as a bitfield

v

Scalar-vector and vector-vector supported

v

Overload Branch immediate to be predication target rs3

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Register element width and packed SIMD

typedef union {
uint8_t actual_bytes[8]; // actual SRAM bytes
uint8.t b[l; // array of type uint8_t
uinti16_t s[l; // etc
uint32_t i[];
uint64_t 1[1;

} reg. t;

reg.t int_regfile[128];

> Regfile is treated (sort-of) as a byte-level SRAM
» Each "register” starts at an 8-byte offset into SRAM

> requires byte-level "select” lines on SRAM

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Register element width and packed SIMD

> default: elements behave as defined by the standard ISA
» override for Integer operations: 8/16/32 bit SIMD

» override for IEEE754 FP: FP16/FP32 (and later FP80 or
FP128)

» Effectively "typecasts” regfile to union of arrays

» Does not require modification of ISA! This is "tagging”
(similar to the 'Mill' ISA)

» FPADD64 RT, RA, RB becomes ‘actually please do FP16’
(but without needing to add an actual FPADD16 opcode)

» Note: no zeroing unless explicitly requested!
(unused elements e.g. VL=3 when elwidth=16 are predicated
out: int_regfile[RA].s[3] is not zero'd)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Additional Simple-V features

» "fail-on-first” (POWER9 VSX strncpy segfaults on boundary!)
"Twin Predication” (covers VSPLAT, VGATHER,
VSCATTER, VINDEX etc.)

» SVPrefix: 16-bit and 32-bit prefix to scalar operations
(SVP-64 allows more extensive "tag”’ augmentation)

» VBLOCK: a VLIW-like context. Allows space for ‘swizzle'
tags and more. Effectively a "hardware compression
algorithm™ for ISAs.

v

» Ultimate goal: cut down I-Cache usage, cuts down on power

» Typical GPU has its own I-Cache and small shaders.
We are a Hybrid CPU/GPU: I-Cache is not separate!

> Needs to go through OpenPOWER Foundation ‘approval’

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

» Goal is to create a mass-volume low-power embedded SoC
suitable for use in netbooks, chromebooks, tablets,
smartphones, loT SBCs.

» No way we could implement a project of this magnitude
without nmigen (being able to use python OO to HDL)

» Collaboration with OpenPOWER Foundation and Members
absolutely essential. No short-cuts. Standards to be developed
and ratified so that everyone benefits.

» Working on the back of huge stability of POWER ecosystem

> Greatly simplified open 3D and Video drivers reduces product
development costs for customers

» It also happens to be fascinating, deeply rewarding technically
challenging, and funded by NLnet

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

The end
Thank you

Questions?

v

Discussion: http://lists.libre-soc.org
Freenode IRC #libre-soc
http://libre-soc.org/
http://nlnet.nl/PET

v

v

v

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

