
Copyright (C) 2017 Luke Kenneth Casson Leighton

License: GNU Free Document License v1.3+

Contact: lkcl@lkcl.net Date: 08 Sep 2017

Abstract

This document covers the scenario where several people (named "developers") create �les which

need to be distributed (to "users") and upgraded in a way that tampering may be detected.

Members of another group (named "maintainers", who may also be synonymous with individual

"developers") will be responsible for "releasing" any given �le. Special member(s) of that group

(named "FTPMasters") are speci�cally responsible for declaring that a given set of release �les is

in fact "safe". Another (independent) group (named "Mirrors") take copies of those "safe" �les

and help make them available to users.

Contents

1 Scope 2

2 The Process 2

3 Requirements 3
3.1 Requirements Analysis . 4

3.1.1 User must be able to establish FTPMaster identity 4
3.1.2 User must be able to establish Maintainer(s) identities 4
3.1.3 All parties except the user must inter-establish identities 4
3.1.4 All parties must be able to �nd out if identities have been compromised 4
3.1.5 Maintainers must "sign" Releases . 4
3.1.6 FTPMasters must "sign" Release sets . 4
3.1.7 All parties must secure their identity . 4
3.1.8 FTPMasters must be able to revoke a "Release" 5
3.1.9 A user must be able to verify a Release set, post-download 5
3.1.10 A user must be able to verify a �le's Maintainer, post-download 5
3.1.11 No person or resource shall ever become a high-priority target 5
3.1.12 All discussion of revocation must be "signed" 5
3.1.13 All public announcements regarding releases must be "signed" 5
3.1.14 All parties must treat unsigned communications as UNTRUSTED 6
3.1.15 Maintainers must check for (and report any new) irregularities (signed) 6
3.1.16 FTPMasters must check for (and report any new) irregularities (signed) 6
3.1.17 The means to perform manual veri�cation must be documented 6
3.1.18 All identity con�rmation must be established using 100% trustable channels . . 6

4 Functional Speci�cation 7

5 Recommended Implementation 7

6 Appendix 1: Attack detection and disclosure 8

1

1 Scope

• This document covers data integrity. The privacy of the actual distribution of the �les them-
selves is declared "out of scope" and is not part of this document.

• The term "sign" is used with a very speci�c meaning: whatever method is used must be up to a
"cryptographic" standard in order to be acceptable. [2]

• In instances where users do not follow the procedures, or follow the procedures (manual or au-
tomatic) but fail to understand or act appropriately on the result, there is nothing that can be
done for them, Such failures are out of scope for this document.

• However by contrast: failures of Maintainers or the FTPMasters to follow procedures (manual or
automatic) can result in a serious violation of trust for Users, and there need to be "consequences"
which speci�cally aid and assist in restoring that trust in the overall group's ability. Exactly
what those consequences are is also out of scope for this document, with the exception of where
revocation of a Digital Identity is speci�cally required.

• The process described herein is entirely generic and independent of the actual data, or the purpose
to which the �le(s) are actually put. Thus for example in the (main) instance where this process
is used for the distribution of computer program source code, actual building or obtaining the
dependencies, or documentation, is not a critical part of the actual process itself, and is completely
outside the scope of this document.

• That having been said, it is anticipated that the process be primarily implemented in software,
and as such a special case is included in this document which covers ensuring that tools, �les and
resources (including speci�cally the source code of the tools) that themselves are required for the
process are strongly recommended to be managed by the process, such that upgrades and updates
(in particular critical security updates) may be done quickly but also in a safe and provably-secure
automated fashion if so desired.

2 The Process

This section (greatly simpli�ed) describes the actions that are taken by all parties involved in the
creation, management and distribution of the �les:

• A developer creates a �le (and optionally marks it with a revision number)

• A maintainer obtains the �le, marking it with a revision number (mandatory)

• The maintainer passes the "released" �le to the FTPMasters

• The FTPMasters distribute the �le along with other "released" �les

• The "Mirrors" take copies of that set of �les and distribute them

• Users take further copies of (some or all) of the �les

• Users VERIFY the authenticity of the �les before trusting them.

Thus for this last critical step to work, every single step in the above process must be veri�able.
This is referred to as a "chain of trust" and its correct use has huge rami�cations for the entire process.
It is critical to note:

• No part of the process may be skipped: if any part is missed out, the proof of trust can and must
be concluded to be a complete and total failure.

• If any one part of the process is compromised, the entire veri�cation process is compromised.

• Detection of a compromise, whilst straightforward, needs extreme care in communicating its
discovery and reporting, so that nobody is deceived about the event ("false positive").

2

3 Requirements

The Primary requirement is that �le integrity, regardless of the distribution method, may provably be
veri�ed as not having been tampered with, and that if tampering ever occurs it may be reliably be
detected, so that appropriate action can be taken. As can be seen from the Process section, there is a
long chain and a surprisingly large amount involved. So the Primary requirement may be broken down
into several sub-requirements:

1. A user must be able to con�dently establish the identity of the FTPMasters.

2. A user must be able to con�dently establish the identity of every Maintainer.

3. All parties except the user must be able to inter-establish their identities.

4. All parties must be able to establish if an identity has been compromised.

5. Maintainers must "sign" a released �le as being linked to their identity.

6. FTPMasters must "sign" a set of releases as being linked to their identity.

7. All parties doing "signing" are responsible for securing their identity.

8. FTPMasters MUST be able to revoke any given Maintainer's "released �le".
(This is in case a Maintainer is compromised, intentionally or not).

9. A user must be able to download a "Release set" and post-verify the FTPMasters
(Note that the requirement is NOT that the DOWNLOAD be "secure")

10. A user must be able to download a �le and post-verify its Maintainer
(Note that the requirement is NOT that the DOWNLOAD be "secure")

11. No person or resource shall EVER become a high-priority target for attack
(i.e. the implementation shall NOT make anything worth trying to compromise)

12. Discussion of Revocation of any identity or release must be "signed"
(this ensures that revocation may not be spoofed, misleading users)

13. All public announcements regarding releases must be "signed"
(this ensures that announcements may not be spoofed, misleading everyone)

14. With very few exceptions, all parties MUST treat unsigned comms as UNTRUSTED
(in rare cases, physical identity con�rmation is the only option)

15. Maintainers must check (and report any new) irregularities (signing all comms)
(this means verifying online copies of Releases and FTPMasters Releases)

16. FTPMasters must check (and report any new) irregularities (signing all comms)
(this mainly means verifying the online copies of FTPMasters "Release" �le)

17. The means to perform all veri�cation steps manually must be fully documented
(for speci�c times when "management" tools cannot be installed or used)

18. All identity con�rmation must be established using 100% trustable channels

Note that it is assumed that when a party "signs" a �le linking the �le to their identity, that they
are implicitly and simultaneously making a public "Declaration of Trust", namely that they have taken
responsibilty for verifying the integrity of the �le that they are signing. Failure to do so undermines
the entire chain. Consequently, violations of trust must be taken extremely seriously.

3

3.1 Requirements Analysis

The number of requirements seems at �rst to be so large that surely it must be possible to leave even
one of them out. This subsection goes over each requirement in turn, demonstrating that not one single
one of them may be omitted.

3.1.1 User must be able to establish FTPMaster identity

If a user is unable to con�rm the identity of the FTPMasters, the user has no possible way to con�rm
that any given Release �le "signed" by the FTPMaster is in fact signed by that FTPMaster. If that
were to happen, the chain of trust is broken.

3.1.2 User must be able to establish Maintainer(s) identities

If a user is unable to con�rm the identity of any given Maintainer, the user may see that a Released
�le has indeed been signed but they have no way of con�rming who that person really is. Thus in turn
they cannot trust the Released �le, and the chain of trust is broken.

3.1.3 All parties except the user must inter-establish identities

This is about building identity trust between Maintainers and FTPMasters. It does not matter if the
user is involved in the two-way establishment of trust, because the user is not involved in the Release
of �les, only in the receipt of �les (one-way). If however the Maintainers and FTPMasters cannot
inter-verify each other's identities then there is no basis on which to carry out statistical con�rmation
of identity, and thus no way to establish a chain of trust.

3.1.4 All parties must be able to �nd out if identities have been compromised

Without going into actual implementation details this requirement is quite hard to explain, and has
several complex facets. It should however be clear that if any party is compromised, whether their
identity key is stolen, or they are kidnapped and forced to sign "Releases" against their will, if that fact
cannot be established and its knowledge widely distributed, trust in the entire chain is broken. Thus
it is imperative that there exist a means by which all parties may �nd out, as soon as possible, if an
identity has been compromised.

3.1.5 Maintainers must "sign" Releases

This is pretty clear: once a Maintainer's identity is well-known and has been two-way con�rmed by
other Maintainers and the FTPMasters, "Signing" a Release has meaning. If however the Maintainer
does not sign the Release, then there is no way that the Release may be trusted. Maintainers must only
sign �les intended for release, and only release signed �les, otherwise users may believe that unsigned
�les can be trusted. and the whole process is moot.

3.1.6 FTPMasters must "sign" Release sets

The importance of this requirement is less clear. If the Maintainers are signing "Releases", why does
the FTPMaster have to sign the set of Releases as well? If they do not "sign" a Release set, various
problems occur such as being unable to revoke a Release. Also, with the Release "set" e�ectively being
a full collection of all available �les, the (signed) set is an important convenient resource. And if users
are to make use of that resource, they must be able to trust it.

3.1.7 All parties must secure their identity

This is absolutely critical. If anyone loses their identity key such that another person may fake their
identity and perform unauthorised "signing", the entire chain of trust is compromised.

4

3.1.8 FTPMasters must be able to revoke a "Release"

This is again critical, and is an extension of signing the Release sets. In cases where a Maintainer's
identity is compromised, or the Maintainer themselves compromised, or even if there is simply a severe
problem with a "Release", is critical that it be excluded from distribution. How may that be achieved
if the FTPMaster has never been signing Release sets? By having Release sets, an FTPMaster may
create a newer up-to-date Release set which excludes the compromised or bad Release. If that is not
part of the requirements, a compromised or bad Release will continue to be distributed and the trust
and con�dence in the whole system would be severely undermined.

3.1.9 A user must be able to verify a Release set, post-download

This is a subtle requirement which provides the user with trust in the FTPMaster and in the con�dence
of the integrity of a Release set. If the user cannot check that a Release set has been signed by the
FTPMasters, the user has no way of knowing if the Release set is legitimate: the CD/DVD or the server
from which �les are obtained could have been compromised. However it is easy to confuse integrity
of the download process (if there is a download) with integrity of the Release set. If the Release set's
authenticity may be veri�ed post-download, then the integrity of the actual download process (or o�ine
copying and courier process) is not actually relevant.

3.1.10 A user must be able to verify a �le's Maintainer, post-download

This requirement appears to be the sole purpose of the exercise but it can easily be misundersood and
believed that it is the download (the stream over which the �le is obtained) which requires veri�cation,
not the �le itself. If the �le's authenticity may be veri�ed post-download, then the integrity of the
actual download process (or o�ine copying and courier process) is not actually relevant. However if
the �le's Maintainer's identity cannot be veri�ed at all then the chain of trust cannot be established.

3.1.11 No person or resource shall ever become a high-priority target

This is an extremely important requirement. If as part of the implementation details a user or a server
has high-value information or data which, if compromised, an attacker could use to undermine the
chain of trust, the whole exercise is over. Without going into speci�c implementation details, examples
include placing private keys onto servers (SSL is �awed for this reason) which thus make that server a
high-priority target.

However it goes further than that: people should also never become a target, and that means that
people need to be inter-changeable (meaning that it is important that identities be two-way veri�ed
many times); private identity keys must be kept permanently o�ine, never connecting them to a
networked computer at any time. If this is known publicly to be part of the strict procedures, the
motivation for an attacker to target any given individual is removed.

3.1.12 All discussion of revocation must be "signed"

If any discussion is not signed, or if this is not part of the standard procedure, then Maintainers and the
FTPMasters may get into the habit of having "unsigned" discussions. At that point, an attacker may
easily insert fake conversations into the discussion, making people believe that a release or a particular
individual's identity needs to be revoked when it does not. In order to avoid this scenario, discussions
must be "signed" (and signed only using the same key that has been identity inter-con�rmed with
multiple other people).

3.1.13 All public announcements regarding releases must be "signed"

Whilst there may be a strong belief that the news announcement infrastructure of an organisattion
is secure, this cannot be guaranteed. The only way to be absolutely sure that an announcement has
genuinely been made by the FTPMasters is if it has been "signed". If this is not done then an attacker

5

will consider ways to compromise the news announcement infrastructure, making it a high-priority
target, and that also violates Requirement 11.

3.1.14 All parties must treat unsigned communications as UNTRUSTED

This is an extension and clari�cation of the previous requirements. If unsigned communications are not
treated as untrusted, an attacker may insert fake communications into any conversation and they risk
being accepted as real. This would undermine trust.

There are however a few special extenuating circumstances, such as reports coming in from external
sources which are not part of the web-of-trust. Common sense has to be deployed here, assessing
whether the identity of the source is genuine and legitimate, and whether the information the source
provides may be considered to be both truthful and correct.

3.1.15 Maintainers must check for (and report any new) irregularities (signed)

This requirement applies mainly to their own Releases. In certain circumstances the distributed �les
may be out-of-date with respect to the current release made and uploaded for distribution by the
Maintainer. In such circumstances it is the responsibility of the Maintainer to notify the group (using
signed communications only) as to the discrepancy.

If they do not do this, there exist certain circumstances where they may be the only person who
knows that the �le is out-of-date or otherwise incorrect, and by not reporting the discrepancy they
undermine the trust in the entire process. Additionally, the rule "many hands make light work" applies
in a statistical manner, so the more Maintainers check other Maintainer's �les, and also check the
FTPMasters Release set, the less chance of discrepancies.

3.1.16 FTPMasters must check for (and report any new) irregularities (signed)

This is exactly the same as the Maintainers requirement except as applying to the Release set and its
associated signing. In all respects it is otherwise identical, including the consequences of not having
such a requirement.

3.1.17 The means to perform manual veri�cation must be documented

This requirement is here for several reasons. Firstly, the manual veri�cation process needs to be able
to be used in order to con�rm that the automated process (if there is one) is correct. Secondly, there
are instances and circumstances wwhere installing or using automated tools is not possible.

Not only that, but without a properly documented set of procedures, trust in the whole process is
undermined as it may not be audited or reviewed properly. Security being what it is, auditing and
transparency is far more important than it �rst seems.

3.1.18 All identity con�rmation must be established using 100% trustable channels

This is a clari�cation of the early requirements on establishing identities. If any identity is not con�rmed
using channels that are known to be 100% trustworthy, the entire process breaks down. Speci�cally, it
is imperative that the channel used to obtain �les and signatures not be that which is used to establish
identities.

Face-to-face physical meetings are almost exclusively the only method by which identities can be
truly con�rmed with 100% con�dence. In instances where that is not possible, i.e. where one person is
not known to another and there is no practical way for them to physically meet, a chain of "con�rmed
identity declarations" (known formally as a "web of trust") may be used instead, to ultimately reach
at least one person whose identity can be (or has already been) con�rmed face-to-face.

6

4 Functional Speci�cation

TBD
Notes: must be automated. should be a predictable time after upload when a maintainer may make

an announcement about a new version appearing on ftp.gnu.org.

5 Recommended Implementation

TBD

7

6 Appendix 1: Attack detection and disclosure

IMPORTANT NOTE: there is no implication in this document at any point or time that SSL is
ine�ective at ensuring data privacy. Such discussions are not part of this document, and are completely
out of scope.

This appendix illustrates scenarios how and where signing may be used to detect that attacks have
occurred. It also, as part of the analysis, shows how the use of socket-level privacy (SSL) - whilst it may
be e�ective in guaranteeing data privacy - is 100% ine�ective in preventing or assisting in the detection
of data integrity and proof of provenance attacks.

The scenarios however illustrate why it is necessary to have speci�c procedures in place for detection
of attacks (Requirements 15 and 16).

First we de�ne some terms:

GNU/M shorthand for a GNU Maintainer (see Maintainer, above)

FTP/M shorthand for "FTP Master" (again see above)

User a user (again see above)

HTTP general term covering all non-private transfer types (inc. o�ine)

HTTPS general term covering all SSL-based (more speci�cally TLS-based as SSL is no longer secure)
�le protocols including FTP/TLS, as well as other transparent privacy channels including o�ine
ones such as secure and 100% trusted physical couriers carrying USB media or CD/DVDs.

rN an FTPMaster's "release" with a speci�c number (r1, r2 ...)

rBADN an attacker's "release" (100% guaranteed to fail signature checking)

Sig:X a signature's status report (Sig:OK, Sig:FAIL)

MITM a "Man in the Middle" attack

GITM a "Government in the Middle" (attack). Some Governments REQUIRE that users install
tracking systems which allow them to transparently alter network data. Some Governments do
that anyway without consent. Both are covered by this term.

DoS a "Denial of Service" attack (also covers plain-old network failure)

SWITCH a Server attack where an attacker maliciously replaces good data �les with bad ones, with
the hope of that substitution going undetected for as long as possible

BProxy a Transparent down-stream Proxy over which users have absolutely no control which unin-

tentionally serves old �les due to poor ISP con�guration.

Here is the normal successful scenario, which includes transfer of data:

GNU/M .. FTP/M .. r3 .. HTTP .. User .. Sig:OK

In this example, the following occurred:

• A GNU Maintainer created a package and signed it

• The FTP Master received the package, created a new release (r3), and signed it

• The FTP MAster uploaded r3 to the server, making it available on HTTP

• A User downloaded r3

• A User performed GPG Signature checking and was able to verify r3 as OK.

Now let us add some attack scenarios:

GNU/M .. FTP/M .. r3 .. SWITCH .. rBAD3 .. HTTP .. User .. Sig:FAIL

8

In this scenario, an attacker REPLACED r3 with a BAD release. However, signature checking being
o�ine and inviolate, the user was inconvenienced but able to detect it.

Here are some additional scenarios (all of which assume start with the GNU Maintainer and FTP
Master uploading r3, so the chain is shortened, visually):

r3 .. SWITCH .. rB3 .. HTTP .. User .. Sig:FAIL

r3 .. HTTP .. MITM .. rBAD3 .. User .. Sig:FAIL

r3 .. HTTPS .. GITM/MITM .. rBAD3 .. User .. Sig:FAIL

r3 .. SWITCH .. rBAD3 .. GITM/MITM .. rBAD4(!) .. User .. Sig:FAIL

In each instance, regardless of the attack used, and regardless of the means and method of download
(or upload) in particular regardless of whether SSL was involved in the process, Signature-checking
succeeds in detecting the attack.

Thus we may logically and formally conclude that at no time does the use or deployment of SSL or
in fact any form of "privacy" channel added to the system aid us in any way in the process of detecting
if an attack has occurred, nor does SSL or any "privacy" channel (even o�ine ones) aid us in or add
anything to the signature validation process, which on its own - i.e. with or without SSL - covers the
attack scenarios with a 100% success rate.

There are two scenarios remaining to check. The �rst is DoS attacks, and the second is a special form
of attack where the attacker substitutes legitimate previously-signed releases. First, the DoS attack:

r3 .. HTTP .. DoS .. User .. FAIL

r3 .. HTTPS .. DoS .. User .. FAIL

r3 .. SWITCH .. rBAD3 .. HTTP .. DoS .. User .. FAIL

r3 .. HTTP .. MITM .. rBAD3 .. DoS .. User .. FAIL

r3 .. HTTPS .. GITM/MITM .. rBAD3 .. DoS .. User .. FAIL

r3 .. SWITCH .. rBAD3 .. HTTPS :: GITM/MITM .. rBAD4(!) .. DoS .. User .. FAIL

In each instance, regardless of whether a separate (or the same) attacker has or has not compromised
the server and its data, the DoS attack (or plain and simple network failure) may easily be detected by
the User: they simply cannot get to resources (compromised or otherwise).

Again: the use or otherwise of HTTPS or other privacy channels adds nothing of value as far as
detection of failure is concerned. (Note: the reader is invited to apply same exercise to the upload
process, and con�rm an identical result and conclusion).

Now we come to the special scenarios where attackers attempt to replace data with a legitimate

and previously validly signed release. Interestingly this scenario is not hypothetical: it can and does
actually occur, but not deliberately. Some forms of Transparent HTTP Proxies have su�ciently broken
caches that they will preserve �les (Release �les for example) for longer than they should. There isn't
anything "per se" that can be done about this as it's usually the fault of the user's ISP. Here are the
scenarios. In this scenario we assume a release "r4" but that, for whatever reason, the user receives
"r3":

r4 HTTP .. BProxy .. r3 .. User .. Sig:OK

r4 HTTPS .. BProxy .. r3 .. User .. Sig:OK

r4 .. SWITCH .. r3 .. HTTP .. User .. Sig:OK

r4 .. HTTP .. MITM .. r3 .. User .. Sig:OK

r4 .. HTTPS .. GITM/MITM .. r3 .. User .. Sig:OK

r4 .. SWITCH .. rBAD4 .. GITM/MITM .. r3 .. User .. Sig:OK

In all of these scenarios - which include bizarre ones where one attacker tries to put a bad (guaranteed
to fail) release on the server, followed by the NSA or other government carrying out a MITM attack
and substituting r3, we may even add to that chain that the NSA's e�orts are bizarrely thwarted by
an ISP's aberrant Transparent Proxy outside of their control!

All of them result in the user being deceived, believing that the release is older than it is. We assume,
of course, that the user has no access to other "side-channels" of news such that they are unable to

9

verify this. In the case of an o�ine media scenario where the User has received a CD/DVD in the
mail (compromised through substitution with an older CD/DVD) there is no real-time way for them
to detect this.

However, once again - before proceeding to the next phase (working out what may be done to deal
with the problem) it is absolutely critical to note that, once again, due to the nature of SSL "privacy"
channels (including within that all other forms of transparent private communications methods), at
no time was SSL (or other similar method) of assistance to us in the failure to detect or mitigate the
substitution.

Another way to explain this is with a Venn Diagram truth table. In this Venn Diagram, GPG and
SSL are considered as to their impact on Data Integrity. By "SSL" we mean "all and any methods
of providing transparent data privacy" which can also include secure o�-line couriers. By "GPG" we
mean the full procedures required to guarantee data integrity and provenance. By "attack vectors" we
mean "all and any possible means and methods typically used to compromise network tra�c, network-
connected devices and all methods of transferring data from device to device". We assume however
that both GPG and SSL themselves are 100% e�ective in ful�lling their respective jobs, and are not
themselves subjected to attack.

GPG SSL Data Integrity

Used: no Used: no not guaranteed (dozens of attack vectors)

Used: no Used: yes not guaranteed (several attack vectors still possible)

Used: yes Used: no guaranteed (as long as procedures are followed)

Used: yes Used: yes still guaranteed (because of GPG... not SSL)

From this diagram we can see that "Data Integrity" is true when GPG is used, and "Data Integrity"
is false when GPG is not. SSL has no in�uence on the outcome. Thus we may logically and formally
declare that in all cases SSL and other transparent privacy methodologies are 100% ine�ective in
assisting with the job of provably verifying the provenance and integrity of the data.

This just leaves us with the task of coming up with a series of procedures which can be successful in
detecting the deliberate (or accidental) substitution of data (that we know will pass signature checking).

Questions:

• Where can the detection actually take place such that old �les are noticed?

• Who is guaranteed to have copies of the correct �les?

These simple questions provide us with the answer: it is the Maintainer and more speci�cally the
FTPMaster who will have last seen - and knows that it is the case - the correct �le(s). Thus it is the
responsibility of Package Maintainer(s) to report that their package has not reached the server(s), and
it is the responsibility of the FTPMasters to report that their Release �le has not reached the server(s).

For this disclosure to work, it is necessary that the Maintainer(s) and FTPMasters make formal
side-channel public announcements using the exact same signatures as utilised to sign their respective
�le(s) and Release(s). A mailing list would be su�cient for this task, however it should not be the only
method (as that could be DoS'd or simply down as well).

For those people without real-time online secure communications, for whom o�ine media is the sole
method of receiving Signed Releases, unfortunately there really is nothing that can be done for them.
They should establish alternative equivalent veri�cation channels which achieve the same outcome
(veri�cation of provenance and that the Release is up-to-date) but advising what exact methods they
should use remains outside the scope of this document.

The last thing that needs to be said is that whilst it is technically possible to have expiry dates
on Signatures, such that any given Release or FTPMasters Release could be detected to have expired,
with a view to at least forcing people to keep up-to-date with Releases, the problem is in the use of
the word "force". It has the unintended side-e�ect of making it extremely di�cult to use old archives
of Releases, as well as adding an unnecessary burden on Users (requiring constant network access).
With side-channel procedures being e�ective (and already established and in use), the forced reliance
on constant network access and updating of the FTPMaster Release �le is not even necessary.

In summary and conclusion:

10

• Signature Checking, which is a formal method of provably making identity-backed declarations
of integrity, is the fundamental bedrock for this exercise;

• If real-time network access is not available (DoS'd), side-channels and procedures using identity-
backed (signed) communications MUST be activated to make that fact known widely and quickly;

• Forcing users to continuously obtain a non-expired Release File is neither practical nor necessary.

• O�ine users must come up with their own equivalent (as best they can) of real-time (identity-
backed) veri�cation procedures;

• Maintainers and FTPMasters being cut o� from all real-time internet communications is a catas-
trophic failure scenario well beyond the scope of this document;

• At no time does SSL or other "transparent" privacy channel practice or procedure aid, assist or
usefully feature in the detection, attack mitigation or recovery processes associated with proof of
data integrity and provenance veri�cation.

11

References

[1] http://en.wikipedia.org/wiki/Digital_signature.

[2] https://www.gnu.org/prep/maintain/maintain.html#Automated-FTP-Uploads

12

http://en.wikipedia.org/wiki/Digital_signature
https://www.gnu.org/prep/maintain/maintain.html#Automated-FTP-Uploads

	Scope
	The Process
	Requirements
	Requirements Analysis
	User must be able to establish FTPMaster identity
	User must be able to establish Maintainer(s) identities
	All parties except the user must inter-establish identities
	All parties must be able to find out if identities have been compromised
	Maintainers must "sign" Releases
	FTPMasters must "sign" Release sets
	All parties must secure their identity
	FTPMasters must be able to revoke a "Release"
	A user must be able to verify a Release set, post-download
	A user must be able to verify a file's Maintainer, post-download
	No person or resource shall ever become a high-priority target
	All discussion of revocation must be "signed"
	All public announcements regarding releases must be "signed"
	All parties must treat unsigned communications as UNTRUSTED
	Maintainers must check for (and report any new) irregularities (signed)
	FTPMasters must check for (and report any new) irregularities (signed)
	The means to perform manual verification must be documented
	All identity confirmation must be established using 100% trustable channels

	Functional Specification
	Recommended Implementation
	Appendix 1: Attack detection and disclosure

