
Big Integer Arithmetic Instruction
design

An analysis of big-integer arithmetic instructions
(why not to put all eggs in Custom Silicon basket)

Silicon Salon 2023

Sponsored by NLnet’s Assure Programme

May 3, 2023

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

Who are we?

I Libre-SOC: a fully Libre Project with the goal of creating a
Hybrid 3D CPU-VPU-GPU including designing a powerful
Vector Extension (for the Power ISA). https://libre-soc.org

I RED Semiconductor Ltd: a commercial realisation of
Libre-SOC designs. https://redsemiconductor.com

I Libre-SOC researches and designs instructions that are then
proposed to the OpenPOWER Foundation ISA Technical
Workgroup; RED Semiconductor (as an OPF ISA WG Voting
Member) then keeps an eye on the RFC.

I RED Semiconductor Ltd seeks VC funding and commercial
business propositions, Libre-SOC covers Research.

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

What are the challenges faced by Biginteger?

I Algorithms especially post-quantum are now fast-moving.
This does not go down well! It typically takes 5-10 years for
an algorithm to become ”trustable”.

I Custom Cryptographic Hardware will typically take 3 years
from design concept to first production silicon: Certification
even longer. If a fault is found in the algorithm, the entire
investment is wasted.

I Performance on 32-bit and 64-bit Embedded Hardware sucks.
Algorithms are roughly O(N2) which wreaks havoc. The
temptation therefore is to add SIMD instructions or dedicated
”custom” instructions which makes the problem worse.

I So how can these polar opposites be solved?

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

Go back to the algorithms.

I https://libre-soc.org/openpower/sv/biginteger/analysis/

I Starting with Knuth’s Algorithm D and M, if a True-Scalable
Vector ISA can cope with those, chances are good it’ll cope
with more (Karatsuba, and so on).

I SVP64 has ”looping” as a primary construct:
loop i 0..VL-1: GPR(RT+i) = ADD(GPR(RA+i), GPR(RB+i)

I If however Carry-in and Carry-out are included in that, we
have arbitrary-length Big-Integer Vector Add!

I For all other operations as long as Scalar-Vector is ok, it turns
out to be possible to do 64-bit carry-in and 64-bit carry-out,
without significant hardware disruption.

I Irony: all relevant Scalar instructions (shift, mul, div) usually
drop 1/2 the result on the floor!

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

Turning add-with-carry into Vector-Add

I Add-with-Carry is the building-block of larger operations

I Let’s simply chain them together.

I sv.adde (Add-Carry with Vector loop) creates chains

R0,CA = A0+B0+CA adde r0,a0,b0

|

+----------+

|

R1,CA = A1+B1+CA adde r1,a1,b1

|

+----------+

|

R2,CA = A2+B2+CA adde r2,a2,b2

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

Vector-Scalar Shift

I Shift by 64-bit is just ”pick a register”

I Add a 2nd input register with what needs to be shifted IN
(64-bit carry in)

I Add 2nd output saving what normally gets thrown away
(64-bit carry-out)

I Again: a chain of these performs Vector-by-Scalar shift

brs(uint64_t s, uint64_t r[], uint64_t un[], int n) {

for (int i = 0; i < n - 1; i++)

r[i] = (un[i] >> s) | (un[i + 1] << (64 - s));

r[n - 1] = un[n - 1] >> s;

}

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

Vector-Scalar Multiply

I Normally in MAC the top 64-bits is thrown away.
I What if we stored those 64-bits in a 2nd register?

(64-bit carry-out)
I And what if the next MAC added that ”digit” on?

(64-bit carry-in)
I Again: a chain of these performs Vector-by-Scalar Multiply

RT0, RC0 = RA0 * RB0 + 0

|

+----------------+

|

RT1, RC1 = RA1 * RB1 + RC0

|

+----------------+

|

RT2, RC2 = RA2 * RB2 + RC1

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

Vector-Scalar Divide

I Same story. special-case for overflow.

RT0 = ((0<<64) | RA0) / RB0

RC0 = ((0<<64) | RA0) % RB0

|

+-------+

|

RT1 = ((RC0<<64) | RA1) / RB1

RC1 = ((RC0<<64) | RA1) % RB1

|

+-------+

|

RT2 = ((RC1<<64) | RA2) / RB2

RC2 = ((RC1<<64) | RA2) % RB2

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

Summary so far

I Extending the usual 1-bit Carry-in Carry-out to 64-bit and
adding a loop-construct inherently turns Scalar operations
into arbitrary-length Vectorised ones

I Irony: 30 years ago Power ISA actually had a ”Carry SPR”,
where the normally-discarded upper half of multiply would be
placed in that SPR (it was deprecated).

I Hardware is NOT made more complex because in all shift
multiply and divide operations these bits are discarded in
other ISAs, which is why you end up with complex carry
workarounds. This gives ISAs a ”bad rep” for doing Big-int

I The ”complication” is that you need 3-in 2-out instructions,
but actually in Micro-code you can do operand-forwarding.
1st op: 3-in 1-out. chain: 2-in 1-out. Last: 2-in 2-out.

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

OpenTITAN

I https://opentitan.org/book/hw/ip/otbn/index.html

I 256b wide data path with 32 256b wide registers

I Zero-Overhead Loop Control would have been better
https://ieeexplore.ieee.org/abstract/document/1692906/

I Formal verification completion time is a factor of the
operation bit-width. 256-bit unlikely to be reasonable time.

I 256-bit is great for EC25519 but for RSA (etc.) you run into
exactly the same problem as a Scalar ISA, made worse.

I Opportunities to optimise algorithms not possible (efficient
power-optimised Karatsuba, etc.)

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

OpenTITAN shift

I Immediate-only. what about shift-by-reg?

I merges 2 operands, still not chainable.

I needs a copy of the vector input (double number of regs)

I needs massive 256-bit shifter! 8 layers of muxes!

a = WDRs[wrs1]

b = WDRs[wrs2]

result = (((a << 256) | b) >> imm) & ((1 << 256) - 1)

WDRs[wrd] = result

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

Draft Double-Shift

I Remarkably similar to x86’s shld/shrd

I Does not need 128-bit ROT: simple mod to existing hardware

I Hardware may macro-op fuse Vector-shift for better efficiency

I Chainable and in-place (no copy of vector needed).

n <- (RB)[58:63] # Power ISA MSB0 numbering. sigh

v <- ROTL64((RA), n)

mask <- MASK(0, 63-n)

RT <- (v[0:63] & mask) | ((RC) & ~mask)

RS <- v[0:63] & ~mask

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

Conclusion

I We went back to the algorithms (Knuth D and M) and
examined what they are trying to achieve.

I Turns out they need a 64-bit carry-in and carry-out

I Keeping to 64-bit maximum hardware means Formal Proofs
complete in reasonable time (less than heat-death of universe)

I Reasonably straightforward: creates and uses partial results
normally thrown away (needing more instructions)

I Freaks out pure-RISC proponents (3-in 2-out) but look at the
number of instructions (and temporary registers) needed
otherwise, and the overall algorithm efficiency, and the case
for these instructions is clear.

I They also speed up general-purpose code

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

The end
Thank you
Questions?

I https://redsemiconductor.com

I Discussion: http://lists.libre-soc.org

I Libera.Chat IRC #libre-soc

I http://libre-soc.org/

I http://nlnet.nl/assure

I https://libre-soc.org/nlnet/#faq

Luke Kenneth Casson Leighton Big Integer Arithmetic Instruction design

