
RFC ls008 SVP64 Management instructions </>
• Funded by NLnet under the Privacy and Enhanced Trust Programme, EU Horizon2020 Grant 825310, and NGI0 Entrust

No 101069594
• https://libre-soc.org/openpower/sv/
• https://libre-soc.org/openpower/sv/rfc/ls008/
• https://bugs.libre-soc.org/show_bug.cgi?id=1089
• https://git.openpower.foundation/isa/PowerISA/issues/123

Severity: Major

Status: New

Date: 24 Mar 2023

Target: v3.2B

Source: v3.0B

Books and Section affected:

Book I, new Scalar Chapter. (Or, new Book on "Zero-Overhead Loop Subsystem")
Appendix E Power ISA sorted by opcode
Appendix F Power ISA sorted by version
Appendix G Power ISA sorted by Compliancy Subset
Appendix H Power ISA sorted by mnemonic

Summary

setvl - Cray-style "Set Vector Length" instruction
svstep - Vertical-First Mode explicit Step and Status

Submitter: Luke Leighton (Libre-SOC)

Requester: Libre-SOC

Impact on processor:

Addition of two new "Zero-Overhead-Loop-Control" DSP-style Vector-style
Management Instructions which can be implemented extremely efficiently
and effectively by inserting an additional phase between Decode and Issue.
More complex designs are NOT adversely impacted and in fact greatly benefit

Impact on software:

Requires support for new instructions in assembler, debuggers,
and related tools.

Keywords:

Cray Supercomputing, Vectorization, Zero-Overhead-Loop-Control (ZOLC),
Scalable Vectors, Multi-Issue Out-of-Order, Sequential Programming Model,
Digital Signal Processing (DSP)

Motivation

Power ISA is synonymous with Supercomputing and the early Supercomputers (ETA-10, ILLIAC-IV, CDC200, Cray) had
Vectorization. It is therefore anomalous that Power ISA does not have Scalable Vectors. This presents the opportunity to
modernise Power ISA keeping it at the top of Supercomputing.

Notes and Observations:

1. SVP64 is very much designed for ultra-light-weight Embedded use-cases all the way up to moving the bar of Supercomputing
orders of magnitude above its present perception, whilst retaining at all times Sequential Programming Execution.

2. This proposal is the base for further Extensions. These include extending SVP64 onto the Scalar VSX instructions (with a
LONG TERM view in 10+ years to deprecating the PackedSIMD aspects of VSX), to be discussed at a later time, the
potential for extending VSX registers to 128 or beyond, and Arithmetic operations to a runtime-selectable choice of 128-bit,
256-bit, 512-bit or 1024-bit.

3. Massive reductions in instruction count of between 2x and 20x have been demonstrated with SVP64, which is far beyond
anything ever achieved by any general-purpose ISA Extension added to any ISA in the history of Computing.

Changes

Add the following entries to:

• Section 1.3.2 Notation
• the Appendices of Book I
• Instructions of Book I as a new Section
• SVL-Form of Book I Section 1.6.1.6 and 1.6.2

1

https://libre-soc.org/openpower/sv/
https://libre-soc.org/openpower/sv/rfc/ls008/
https://bugs.libre-soc.org/show_bug.cgi?id=1089
https://git.openpower.foundation/isa/PowerISA/issues/123

Notation, Section 1.3.2 </>
When destination register operands (RT, RS) are prefixed by a single underscore (_RT, _RS) the variable also contains the
contents of the instruction field. This avoids confusion in pseudocode when a destination register is assigned (RT <- x) but
earlier it was the operand bits that were checked (if RT = 0)

2

svstep: Vertical-First Stepping and status reporting </>
SVL-Form

• svstep RT,SVi,vf (Rc=0)
• svstep. RT,SVi,vf (Rc=1)

0-5 6-10 11.15 16..22 23-25 26-30 31 Form
PO RT / SVi / / vf XO Rc SVL-Form

Pseudo-code:

if SVi[3:4] = 0b11 then
store pack and unpack in SVSTATE
SVSTATE[53] <- SVi[5]
SVSTATE[54] <- SVi[6]
RT <- [0]*62 || SVSTATE[53:54]

else
Vertical-First explicit stepping.
step <- SVSTATE_NEXT(SVi, vf)
RT <- [0]*57 || step

Special Registers Altered:

CR0 (if Rc=1)

Description

svstep may be used to enquire about the REMAP Schedule and it may be used to alter Vectorization State. When vf=1 then
stepping occurs. When vf=0 the enquiry is performed without altering internal state. If SVi=0, Rc=0, vf=0 the instruction is a
nop.

The following Modes exist:

• SVi=0: appropriately step srcstep, dststep, subsrcstep and subdststep to the next element, taking pack and unpack into
consideration.

• When SVi is 1-4 the REMAP Schedule for a given SVSHAPE may be returned in RT. SVi=1 selects SVSHAPE0 current
state, through to SVi=4 selects SVSHAPE3.

• When SVi is 5, SVSTATE.srcstep is returned.
• When SVi is 6, SVSTATE.dststep is returned.
• When SVi is 7, SVSTATE.ssubstep is returned.
• When SVi is 8, SVSTATE.dsubstep is returned.
• When SVi is 0b1100 pack/unpack in SVSTATE is cleared
• When SVi is 0b1101 pack in SVSTATE is set, unpack is cleared
• When SVi is 0b1110 unpack in SVSTATE is set, pack is cleared
• When SVi is 0b1111 pack/unpack in SVSTATE are set

As this is a Single-Predicated (1P) instruction, predication may be applied to skip (or zero) elements.

• Vertical-First Mode will return the requested index (and move to the next state if vf=1)
• Horizontal-First Mode can be used to return all indices, i.e. walks through all possible states.

Vectorization of svstep itself

As a 32-bit instruction, svstep may be itself be Vector-Prefixed, as sv.svstep. This will work perfectly well in Horizontal-First
as it will in Vertical-First Mode although there are caveats for the Deterministic use of looping with Sub-Vectors in Vertical-First
mode.

Example: to obtain the full set of possible computed element indices use sv.svstep *RT,SVi,1 which will store all computed
element indices, starting from RT. If Rc=1 then a co-result Vector of CR Fields will also be returned, comprising the “loop
end-points” of each of the inner loops when either Matrix Mode or DCT/FFT is set. In other words, for example, when the xdim
inner loop reaches the end and on the next iteration it will begin again at zero, the CR Field EQ will be set. With a maximum of
three loops within both Matrix and DCT/FFT Modes, the CR Field’s EQ bit will be set at the end of the first inner loop, the
LE bit for the second, the GT bit for the outermost loop and the SO bit set on the very last element, when all loops reach their
maximum extent.

Programmer’s note: VL in some situations, particularly larger Matrices (5x7x3 will set MAXVL=105), will cause sv.svstep to
return a considerable number of values. Under such circumstances sv.svstep/ew=8 is recommended.

Programmer’s note: having conveniently obtained a pre-computed Schedule with sv.svstep, it may then be used as the input to
Indexed REMAP Mode to achieve the exact same Schedule. It is evident however that before use some of the Indices may be
arbitrarily altered as desired. sv.svstep helps the programmer avoid having to manually recreate Indices for certain types of
common Loop patterns. In its simplest form, without REMAP (SVi=5 or SVi=6), is equivalent to the iota instruction found in
other Vector ISAs

Vertical First Mode

Vertical First is effectively like an implicit single bit predicate applied to every SVP64 instruction. ONLY one element in each
SVP64 Vector instruction is executed; srcstep and dststep do not increment automatically on completion of one instruction, and
the Program Counter progresses immediately to the next instruction just as it would for any standard scalar v3.0B instruction.

3

A mode of srcstep (SVi=0) is called which can move srcstep and dststep on to the next element, still respecting predicate masks.

In other words, where normal SVP64 Vectorization acts “horizontally” by looping first through 0 to VL-1 and only then moving
the PC to the next instruction, Vertical-First moves the PC onwards (vertically) through multiple instructions with the same
srcstep and dststep, then an explict instruction used to advance srcstep/dststep. An outer loop is expected to be used (branch
instruction) which completes a series of Vector operations.

Testing any end condition of any loop of any REMAP state allows branches to be used to create loops.

Programmer’s note: when Predicate Non-Zeroing is used this indicates to the underlying hardware that any masked-out element
must be skipped. This includes in Vertical-First Mode, and programmers should be keenly aware that srcstep or dststep or both
may* jump by more than one as a result, because the actual request under these circumstances was to execute on the first
available next non-masked-out element. It should be evident that it is the sv.svstep instruction that must be Predicated in
order for the entire loop to use the Predicate correctly, and it is strongly recommended for all instructions within the same
Vertical-First Loop to utilise the exact same Predicate Mask(s).*

Programmers should be aware that VL, srcstep and dststep and the SUBVL substeps are global in nature. Nested looping with
different schedules is perfectly possible, as is calling of functions, however SVSTATE (and any associated SVSHAPEs if REMAP
is being used) should obviously be stored on the stack in order to achieve this benefit not normally found in Vector ISAs.

Use of svstep with Vertical-First sub-vectors

Incrementing and iteration through subvector state ssubstep and dsubstep is possible with sv.svstep/vecN where as expected N
may be 2/3/4. However it is necessary to use the exact same Sub-Vector qualifier on any Prefixed instructions, within any given
Vertical-First loop: vec2/3/4 is not automatically applied to all instructions, it must be explicitly applied on a per-instruction
basis. Also valid is not specifying a Sub-vector qualifier at all, but it is critically important to note that operations will be
repeated. For example if sv.svstep/vec2 is not used on sv.addi then each Vector element operation is repeated twice. The
reason is that whilst svstep will be iterating through both the SUBVL and VL loops, the addi instruction only uses srcstep and
dststep (not ssubstep or dsubstep) Illustrated below:

def offset():
for step in range(VL):

for substep in range(SUBVL=2):
yield step, substep

for i, j in offset():
vec2_offs = i * SUBVL + j # calculate vec2 offset
addi RT+i, RA+i, 1 # but sv.addi is not vec2!
muli/vec2 RT+vec2_offs, RA+vec2_offs, 2 # this is

Actual assembler would be:

loop:
setvl VF=1, CTRmode
sv.addi *RT, *RA, 1 # no vec2
sv.muli/vec2 *RT, *RA, 2 # vec2
sv.svstep/vec2 # must match the muli
sv.bc CTRmode, loop # subtracts VL from CTR

This illustrates the correct but seemingly-anomalous behaviour: sv.svstep/vec2 is being requested to update SVSTATE to follow
a vec2 loop construct. The anomalous sv.addi is not prohibited as it may in fact be desirable to execute operations twice, or to
re-load data that was overwritten, and many other possibilities.

4

Appendix </>
src_iterate

Note that srcstep and ssubstep are not the absolute final Element (and Sub-Element) offsets. srcstep still has to go through
individual REMAP translation before becoming a per-operand (RA, RB, RC, RT, RS) Element-level Source offset.

Note also critically that PACK mode simply inverts the outer/order loops making SUBVL the outer loop and VL the inner.

source-stepping iterator
subvl = SVSTATE.subvl
vl = SVSTATE.vl
pack = SVSTATE.pack
unpack = SVSTATE.unpack
ssubstep = SVSTATE.ssubstep
end_ssub = ssubstep == subvl
end_src = SVSTATE.srcstep == vl-1
first source step.
srcstep = SVSTATE.srcstep
used below:
sz - from RM.MODE, source-zeroing
srcmask - from RM.MODE, the source predicate
if pack:

pack advances subvl in *outer* loop
while True:

assert srcstep <= vl-1
end_src = srcstep == vl-1
if end_src:

if end_ssub:
loopend = True

else:
SVSTATE.ssubstep += 1

srcstep = 0 # reset
break

else:
srcstep += 1 # advance srcstep
if not sz:

break
if ((1 << srcstep) & srcmask) != 0:

break
else:

advance subvl in *inner* loop
if end_ssub:

while True:
assert srcstep <= vl-1
end_src = srcstep == vl-1
if end_src: # end-point

loopend = True
srcstep = 0
break

else:
srcstep += 1

if not sz:
break

if ((1 << srcstep) & srcmask) != 0:
break

else:
log(" sskip", bin(srcmask), bin(1 << srcstep))

SVSTATE.ssubstep = 0b00 # reset
else:

advance ssubstep
SVSTATE.ssubstep += 1

SVSTATE.srcstep = srcstep

5

dest_iterate

Note that dststep and dsubstep are not the absolute final Element (and Sub-Element) offsets. dststep still has to go through
individual REMAP translation before becoming a per-operand (RT, RS/EA) destination Element-level offset, and dsubstep may
also go through (f)mv.swizzle reordering.

Note also critically that UNPACK mode simply inverts the outer/order loops making SUBVL the outer loop and VL the inner.

dest step iterator
vl = SVSTATE.vl
subvl = SVSTATE.subvl
unpack = SVSTATE.unpack
dsubstep = SVSTATE.dsubstep
end_dsub = dsubstep == subvl
dststep = SVSTATE.dststep
end_dst = dststep == vl-1
used below:
dz - from RM.MODE, destination-zeroing
dstmask - from RM.MODE, the destination predicate
if unpack:

unpack advances subvl in *outer* loop
while True:

assert dststep <= vl-1
end_dst = dststep == vl-1
if end_dst:

if end_dsub:
loopend = True

else:
SVSTATE.dsubstep += 1

dststep = 0 # reset
break

else:
dststep += 1 # advance dststep
if not dz:

break
if ((1 << dststep) & dstmask) != 0:

break
else:

advance subvl in *inner* loop
if end_dsub:

while True:
assert dststep <= vl-1
end_dst = dststep == vl-1
if end_dst: # end-point

loopend = True
dststep = 0
break

else:
dststep += 1

if not dz:
break

if ((1 << dststep) & dstmask) != 0:
break

SVSTATE.dsubstep = 0b00 # reset
else:

advance ssubstep
SVSTATE.dsubstep += 1

SVSTATE.dststep = dststep

6

SVSTATE_NEXT

if SVi = 1 then return REMAP SVSHAPE0 current offset
if SVi = 2 then return REMAP SVSHAPE1 current offset
if SVi = 3 then return REMAP SVSHAPE2 current offset
if SVi = 4 then return REMAP SVSHAPE3 current offset
if SVi = 5 then return SVSTATE.srcstep # VL source step
if SVi = 6 then return SVSTATE.dststep # VL dest step
if SVi = 7 then return SVSTATE.ssubstep # SUBVL source step
if SVi = 8 then return SVSTATE.dsubstep # SUBVL dest step

SVi=0, explicit iteration requezted
src_iterate();
dst_iterate();
return 0

at_loopend

Both Vertical-First and Horizontal-First may use this algorithm to determine if the “end-of-looping” (end of Sub-Program-Counter)
has been reached. Horizontal-First Mode will immediately move to the next instruction, where svstep. will set CR0.EQ to 1.

tells if this is the last possible element.
subvl = SVSTATE.subvl
vl = SVSTATE.vl
end_ssub = SVSTATE.ssubstep == subvl
end_dsub = SVSTATE.dsubstep == subvl
if SVSTATE.srcstep == vl-1 and end_ssub:

return True
if SVSTATE.dststep == vl-1 and end_dsub:

return True
return False

[[!tag standards]]

7

setvl: Set Vector Length </>
Add the following section to the Simple-V Chapter

setvl </>
SVL-Form

0-5 6-10 11-15 16-22 23 24 25 26-30 31 FORM
PO RT RA SVi ms vs vf XO Rc SVL-Form

• setvl RT,RA,SVi,vf,vs,ms (Rc=0)
• setvl. RT,RA,SVi,vf,vs,ms (Rc=1)

Pseudo-code:

overflow <- 0b0 # sets CR.SO if set and if Rc=1
VLimm <- SVi + 1
set or get MVL
if ms = 1 then MVL <- VLimm[0:6]
else MVL <- SVSTATE[0:6]
set or get VL
if vs = 0 then VL <- SVSTATE[7:13]
else if _RA != 0 then

if (RA) >u 0b1111111 then
VL <- 0b1111111
overflow <- 0b1

else VL <- (RA)[57:63]
else if _RT = 0 then VL <- VLimm[0:6]
else if CTR >u 0b1111111 then

VL <- 0b1111111
overflow <- 0b1

else VL <- CTR[57:63]
limit VL to within MVL
if VL >u MVL then

overflow <- 0b1
VL <- MVL

SVSTATE[0:6] <- MVL
SVSTATE[7:13] <- VL
if _RT != 0 then

GPR(_RT) <- [0]*57 || VL
MAXVL is a static "state-reset" opportunity so VF is only set then.
if ms = 1 then

SVSTATE[63] <- vf # set Vertical-First mode
SVSTATE[62] <- 0b0 # clear persist bit

Special Registers Altered:

CR0 (if Rc=1)
SVSTATE

• SVi - bits 16-22 - an immediate operand for setting MVL and/or VL
• ms - bit 23 - allows for setting of MVL
• vs - bit 24 - allows for setting of VL
• vf - bit 25 - sets “Vertical First Mode”.

Note that in immediate setting mode VL and MVL start from one but that this is compensated for in the assembly notation.
i.e. that an immediate value of 1 in assembler notation actually places the value 0b0000000 in the SVi field bits: on execution the
setvl instruction adds one to the decoded SVi field bits, resulting in VL/MVL being set to 1. In future this will allow VL to be
set to values ranging from 1 to 128 with only 7 bits instead of 8. Setting VL/MVL to 0 would result in all Vector operations
becoming nop. If this is truly desired (nop behaviour) then setting VL and MVL to zero is to be done via the [[SVSTATE
SPR|sv/sprs]].

Note that setmvli is a pseudo-op, based on RA/RT=0, and setvli likewise

setvli VL=8 : setvl r0, r0, VL=8, vf=0, vs=1, ms=0
setvli. VL=8 : setvl. r0, r0, VL=8, vf=0, vs=1, ms=0
setmvli MVL=8 : setvl r0, r0, MVL=8, vf=0, vs=0, ms=1
setmvli. MVL=8 : setvl. r0, r0, MVL=8, vf=0, vs=0, ms=1

Additional pseudo-op for obtaining VL without modifying it (or any state):

getvl r5 : setvl r5, r0, vf=0, vs=0, ms=0
getvl. r5 : setvl. r5, r0, vf=0, vs=0, ms=0

Note that whilst it is possible to set both MVL and VL from the same immediate, it is not possible to set them to different
immediates in the same instruction. Doing so would require two instructions.

Use of setvl results in changes to the SVSTATE SPR. see {SPRs}

8

Selecting sources for VL

There is considerable opcode pressure, consequently to set MVL and VL from different sources is as follows:

condition effect
vs=1, RA=0, RT!=0 VL,RT set to MIN(MVL, CTR)
vs=1, RA=0, RT=0 VL set to MIN(MVL, SVi+1)
vs=1, RA!=0, RT=0 VL set to MIN(MVL, RA)
vs=1, RA!=0, RT!=0 VL,RT set to MIN(MVL, RA)

The reasoning here is that the opportunity to set RT equal to the immediate SVi+1 is sacrificed in favour of setting from CTR.

Unusual Rc=1 behaviour

Normally, the return result from an instruction is in RT. With it being possible for RT=0 to mean that CTR mode is to be read,
some different semantics are needed.

CR Field 0, when Rc=1, may be set even if RT=0. The reason is that overflow may occur: VL, if set either from an immediate or
from CTR, may not exceed MAXVL, and if it is, CR0.SO must be set.

In reality it is VL being set. Therefore, rather than CR0 testing RT when Rc=1, CR0.EQ is set if VL=0, CR0.GE is set if VL is
non-zero.

SUBVL

Sub-vector elements are not be considered “Vertical”. The vec2/3/4 is to be considered as if the “single element”. Caveats exist
for {Swizzle Move} and {Pack / Unpack} when Pack/Unpack is enabled, due to the order in which VL and SUBVL loops are
applied being swapped (outer-inner becomes inner-outer)

Examples </>
Core concept loop </>

This example illustrates the Cray-style Loop concept. However where most Cray Vectors have a Max Vector Length hard-coded
into the architecture, Simple-V allows MVL to be set, but only as a static immediate, so that compilers may embed the register
resource allocation statically at compile-time.

loop:
setvl a3, a0, MVL=8 # update a3 with vl

(# of elements this iteration)
set MVL to 8 and
set a3=VL=MIN(a0,MVL)

do vector operations at up to 8 length (MVL=8)
...
sub. a0, a0, a3 # Decrement count by vl, set CR0.eq
bnez a0, loop # Any more?

Loop using Rc=1 </>

In this example, the setvl. instruction enabled Rc=1, which sets CR0.eq when VL becomes zero. Testing of r4 (cmpi) is thus
redundant saving one instruction.

my_fn:
li r3, 1000
b test

loop:
sub r3, r3, r4
...

test:
setvli. r4, r3, MVL=64
bne cr0, loop

end:
blr

Load/Store-Multi (selective) </>

Up to 64 FPRs will be loaded, here. r3 is set one per bit for each FP register required to be loaded. The block of memory from
which the registers are loaded is contiguous (no gaps): any FP register which has a corresponding zero bit in r3 is unaltered. In
essence this is a selective LD-multi with “Scatter” (VCOMPRESS) capability.

setvli r0, MVL=64, VL=64
sv.fld/dm=r3 *r0, 0(r30) # selective load 64 FP registers

Up to 64 FPRs will be saved, here. Again, r3 specifies which registers are set in a VEXPAND fashion.

setvli r0, MVL=64, VL=64
sv.stfd/sm=r3 *fp0, 0(r30) # selective store 64 FP registers

[[!tag standards]]

9

10

SPRs </>
The full list of SPRs for Simple-V is:

SPR Width Description
SVSTATE 64-bit Zero-Overhead Loop Architectural State
SVLR 64-bit SVSTATE equivalent of LR-to-PC
SVSHAPE0 32-bit REMAP Shape 0
SVSHAPE1 32-bit REMAP Shape 1
SVSHAPE2 32-bit REMAP Shape 2
SVSHAPE3 32-bit REMAP Shape 3

Future versions of Simple-V will have at least 7 more SVSTATE SPRs, in a small “stack”, as part of a full Zero-Overhead Loop
Control subsystem.

SVSTATE SPR </>
The format of the SVSTATE SPR is as follows:

Field Name Description
0:6 maxvl Max Vector Length
7:13 vl Vector Length
14:20 srcstep for srcstep = 0..VL-1
21:27 dststep for dststep = 0..VL-1
28:29 dsubstep for substep = 0..SUBVL-1
30:31 ssubstep for substep = 0..SUBVL-1
32:33 mi0 REMAP RA/FRA/BFA SVSHAPE0-3
34:35 mi1 REMAP RB/FRB/BFB SVSHAPE0-3
36:37 mi2 REMAP RC/FRT SVSHAPE0-3
38:39 mo0 REMAP RT/FRT/BF SVSHAPE0-3
40:41 mo1 REMAP EA/RS/FRS SVSHAPE0-3
42:46 SVme REMAP enable (RA-RT)
47:52 rsvd reserved
53 pack PACK (srcstep reorder)
54 unpack UNPACK (dststep order)
55:61 hphint Horizontal Hint
62 RMpst REMAP persistence
63 vfirst Vertical First mode

Notes:

• The entries are truncated to be within range. Attempts to set VL to greater than MAXVL will truncate VL.
• Setting srcstep, dststep to 64 or greater, or VL or MVL to greater than 64 is reserved and will cause an illegal instruction

trap.

SVSTATE Fields

SVSTATE is a standard SPR that (if REMAP is not activated) contains sufficient self-contaned information for a full context
save/restore. SVSTATE contains (and permits setting of):

• MVL (the Maximum Vector Length) - declares (statically) how much of a regfile is to be reserved for Vector elements
• VL - Vector Length
• dststep - the destination element offset of the current parallel instruction being executed
• srcstep - for twin-predication, the source element offset as well.
• ssubstep - the source subvector element offset of the current parallel instruction being executed
• dsubstep - the destination subvector element offset of the current parallel instruction being executed
• vfirst - Vertical First mode. srcstep, dststep and substep do not advance unless explicitly requested to do so with svstep
• RMpst - REMAP persistence. REMAP will apply only to the following instruction unless this bit is set, in which case

REMAP “persists”. Reset (cleared) on use of the setvl instruction if used to alter VL or MVL.
• Pack - if set then srcstep/ssubstep VL/SUBVL loop-ordering is inverted.
• UnPack - if set then dststep/dsubstep VL/SUBVL loop-ordering is inverted.
• hphint - Horizontal Parallelism Hint. Indicates that no Hazards exist between groups of elements in sequential multiples of

this number (before REMAP). By definition: elements for which FLOOR(step/hphint) is equal before REMAP are in the
same parallelism “group”, for both srcstep and dststep. In Vertical First Mode hardware MUST respect Strict Program
Order but is permitted to merge multiple scalar loops into parallel batches, if Reservation Station resources are sufficient.
Set to zero to indicate “no hint”.

• SVme - REMAP enable bits, indicating which register is to be REMAPed: RA, RB, RC, RT and EA are the canonical
(typical) register names associated with each bit, with RA being the LSB and EA being the MSB. See table below for
ordering. When SVme is zero (0b00000) REMAP is fully disabled and inactive regardless of the contents of SVSTATE,
mi0-mi2/mo0-mo1, or the four SVSHAPEn SPRs

• mi0-mi2/mo0-mo1 - these indicate the SVSHAPE (0-3) that the corresponding register (RA etc) should use, as long as the
register’s corresponding SVme bit is set

11

Programmer’s Note: the fact that REMAP is entirely dormant when SVme is zero allows establishment of REMAP context well
in advance, followed by utilising svremap at a precise (or the very last) moment. Some implementations may exploit this to
cache (or take some time to prepare caches) in the background whilst other (unrelated) instructions are being executed. This is
particularly important to bear in mind when using svindex which will require hardware to perform (and cache) additional GPR
reads.

Programmer’s Note: when REMAP is activated it becomes necessary on any context-switch (Interrupt or Function call) to detect
(or know in advance) that REMAP is enabled and to additionally explicitly save/restore the four SVSHAPE SPRs, SVHAPE0-3.
Given that this is expected to be a rare occurrence it was deemed unreasonable to burden every context-switch or function call
with mandatory save/restore of SVSHAPEs, and consequently it is a callee (and Trap Handler) responsibility. Callees (and Trap
Handlers) MUST avoid using all and any SVP64 instructions during the period where state could be adversely affected. SVP64
purely relies on Scalar instructions, so Scalar instructions (except the SVP64 Management ones and mtspr and mfspr) are 100%
guaranteed to have zero impact on SVP64 state.

SVme REMAP area

Each bit of SVSTATE.SVme indicates whether the SVSHAPE (0-3) is active and to which register the REMAP applies. The
application goes by assembler operand names on a per-mnemonic basis. Some instructions may have RT as a source and as a
destination: REMAP applies separately to each use in this case. Also for Load/Store with Update the Effective Address (stored
in EA) also may be separately REMAPed from RA as a source operand.

bit applies register applied
46 mi0 source RA / FRA / BA / BFA / RT / FRT
45 mi1 source RB / FRB / BB
44 mi2 source RC / FRC / BC
43 mo0 result RT / FRT / BT / BF
42 mo1 result Effective Address (RA) / FRS / RS

Max Vector Length (maxvl)

MAXVECTORLENGTH is a static (immediate-operand only) compile-time declaration of the maximum number of elements in a
Vector. MVL is limited to 7 bits (in the first version of SVP64) and consequently the maximum number of elements is limited to
between 0 and 127.

MAXVL is normally (in other True-Scalable Vector ISAs) an Architecturally-defined quantity related indirectly to the total
available number of bits in the Vector Register File. Cray Vectors had a Hardware-Architectural set limit of MAXVL=64. RISC-V
RVV has MAXVL defined in terms of a Silicon-Partner-selectable fixed number of bits. MAXVL in Simple-V is set in terms of
the number of elements and may change at runtime.

Programmer’s Note: Except by directly using mtspr on SVSTATE, which may result in performance penalties on some hardware
implementations, SVSTATE’s maxvl field may only be set statically as an immediate, by the setvl instruction. It may NOT
be set dynamically from a register. Compiler writers and assembly programmers are expected to perform static register file
analysis, subdivision, and allocation and only utilise setvl. Direct writing to SVSTATE in order to “bypass” this Note could, in
less-advanced implementations, potentially cause stalling, particularly if SVP64 instructions are issued directly after the mtspr to
SVSTATE.

Vector Length (vl)

The actual Vector length, the number of elements in a “Vector”, SVSTATE.vl may be set entirely dynamically at runtime from a
number of sources. setvl is the primary instruction for setting Vector Length. setvl is conceptually similar but different from
the Cray, SX Aurora, and RISC-V RVV equivalent. Similar to RVV, VL is set to be within the range 0 <= VL <= MVL. Unlike
RVV, VL is set exactly according to the following:

VL = (RT|0) = MIN(vlen, MVL)

where 0 <= MVL <= 127, and vlen may come from an immediate, RA, or from the CTR SPR, depending on options selected with
the setvl instruction.

Programmer’s Note: conceptual understanding of Cray-style Vectors is far beyond the scope of the Power ISA Technical Reference.
Guidance on the 50-year-old Cray Vector paradigm is best sought elsewhere: good studies include Academic Courses given on the
1970s Cray Supercomputers over at least the past three decades.

Horizontal Parallelism

A problem exists for hardware where it may not be able to detect that a programmer (or compiler) knows of opportunities for
parallelism and lack of overlap between loops, despite these being easy for a compiler to statically detect and potentially express.
hphint is such an expression, declaring that elements within a batch are independent of each other (no Register or Memory
Hazards).

Elements are considered to be in the same source batch if they have the same value of FLOOR(srcstep/hphint). Likewise in the
same destination batch for the same value FLOOR(dststep/hphint). Four key observations here:

1. predication is not involved here. the number of actual elements involved is considered before predicate masks are applied.
2. twin predication can result in srcstep and dststep being in different batches
3. batch evaluation is done before REMAP, making Hazard elimination easier for Multi-Issue systems.
4. hphint is not limited to power-of-two. Hardware implementors may choose a lower parallelism hint up to hphint and may

find power-of-two more convenient.

12

Regarding (4): if a smaller hint is chosen by hardware, actual parallelism (Dependency Hazard relaxation) must never exceed
hphint and must still respect the batch boundaries, even if this results in just one element being considered Hazard-independent.
Even under these circumstances Multi-Issue Register-renaming is possible, to introduce parallelism by a different route.

Hardware Architect note: each element within the same group may be treated as 100% independent from any other element within
that group, and therefore neither Register Hazards nor Memory Hazards inter-element exist, but crucially inter-group definitely
remains. This makes implementation far easier on resources because the Hazard Dependencies are effectively at a much coarser
granularity than a single register. With element-width overrides extending down to the byte level reducing Dependency Hazard
hardware complexity becomes even more important.

hphint may legitimately be set greater than MAXVL. This indicates to Multi-Issue hardware that even though MAXVL is relatively
small the batches are still independent and therefore if Multi-Issue hardware chooses to allocate several batches up to MAXVL
in size they are still independent, even if Register-renaming is deployed. This helps greatly simplify Multi-Issue systems by
significantly reducing Hazards.

Considerable care must be taken when setting hphint. Matrix Outer Product could produce corrupted results if hphint is
set to greater than the innermost loop depth. Parallel Reduction, DCT and FFT REMAP all are similarly critically affected
by hphint in ways that if used correctly greatly increases ease of parallelism but if done incorrectly will also result in data
corruption. Reduction/Iteration also requires care to correctly declare in hphint how many elements are independent. In the
case of most Reduction use-cases the answer is almost certainly “none”.

hphint must never be set on Atomic Memory operations, Cache-Inhibited Memory operations, or Load-Reservation Store-
Conditional. Also if Load-with-Update Data-Dependent Fail-First is ever used for linked-list pointer-chasing, hphint should
again definitely be disabled. Failure to do so results in UNDEFINED behaviour.

hphint may only be ignored by Hardware Implementors as long as full element-level Register and Memory Hazards are implemented
in full (including right down to individual bytes of each register for when elwidth=8/16/32). In other words if hphint is to be
ignored then implementations must consider the situation as if hphint=0.

Horizontal Parallelism in Vertical-First Mode

Setting hphint with Vertical-First is perfectly legitimate. Under these circumstances single-element strict Program Execution
Order must be preserved at all times, but should there be a small enough program loop, than Out-of-Order Hardware may take
the opportunity to merge consecutive element-based instructions into the same Reservation Stations, for multiple operations
to be passed to massive-wide back-end SIMD ALUs or Vector-Chaining ALUs. Only elements within the same hphint group
(across multiple such looped instructions) may be treated as mergeable in this fashion.

Note that if the loop of Vertical-First instructions cannot fit entirely into Reservation Stations then Hardware clearly cannot
exploit the above optimisation opportunity, but at least there is no harm done: the loop is still correctly executed as Scalar
instructions. Programmers do need to be aware though that short loops on some Hardware Implementations can be made
considerably faster than on other Implementations.

SVLR </>
SV Link Register, exactly analogous to LR (Link Register) may be used for temporary storage of SVSTATE, and, in particular,
Vectorized Branch-Conditional instructions may interchange SVLR and SVSTATE whenever LR and NIA are.

Note that there is no equivalent Link variant of SVREMAP or SVSHAPE0-3 (it would be too costly), so SVLR has limited
applicability: REMAP SPRs must be saved and restored explicitly.

[[!tag standards]]

13

SVL-Form </>
Add the following to Book I, 1.6.1, SVL-Form

0	6	11	16	23	24	25	26	31
PO	RT	RA	SVi	ms	vs	vf	XO	Rc
PO	RT	/	SVi	/	/	vf	XO	Rc

• Add SVL to RA (11:15) Field in Book I, 1.6.2
• Add SVL to RT (6:10) Field in Book I, 1.6.2
• Add SVL to Rc (31) Field in Book I, 1.6.2
• Add SVL to XO (26:31) Field in Book I, 1.6.2

Add the following to Book I, 1.6.2

ms (23)
Field used in Simple-V to specify whether MVL (maxvl in the SVSTATE SPR)
is to be set
Formats: SVL

vf (25)
Field used in Simple-V to specify whether "Vertical" Mode is set
(vfirst in the SVSTATE SPR)
Formats: SVL

vs (24)
Field used in Simple-V to specify whether VL (vl in the SVSTATE SPR) is to be set
Formats: SVL

SVi (16:22)
Simple-V immediate field used by setvl for setting VL or MVL
(vl, maxvl in the SVSTATE SPR)
and used as a "Mode of Operation" selector in svstep
Formats: SVL

Appendices </>
Appendix E Power ISA sorted by opcode
Appendix F Power ISA sorted by version
Appendix G Power ISA sorted by Compliancy Subset
Appendix H Power ISA sorted by mnemonic

Form Book Page Version mnemonic Description
SVL I # 3.0B svstep Vertical-First Stepping and status reporting
SVL I # 3.0B setvl Cray-like establishment of Looping (Vector) context

[[!tag opf_rfc]]

14

	RFC ls008 SVP64 Management instructions </>
	Notation, Section 1.3.2 </>
	svstep: Vertical-First Stepping and status reporting </>
	Appendix </>
	setvl: Set Vector Length </>
	setvl </>
	Examples </>
	Core concept loop </>
	Loop using Rc=1 </>
	Load/Store-Multi (selective) </>

	SPRs </>
	SVSTATE SPR </>
	SVLR </>

	SVL-Form </>
	Appendices </>

