
RFC ls007 Ternary/Binary GPR and CR Field bit-operations </>
• Funded by NLnet under the Privacy and Enhanced Trust Programme, EU Horizon2020 Grant 825310, and NGI0 Entrust

No 101069594
• https://libre-soc.org/openpower/sv/bitmanip/
• https://libre-soc.org/openpower/sv/rfc/ls007/
• https://bugs.libre-soc.org/show_bug.cgi?id=1017
• https://git.openpower.foundation/isa/PowerISA/issues/117

Severity: Major

Status: new

Date: 20 Oct 2022, 1st draft submitted 2023mar22

Target: v3.2B

Source: v3.1B

Books and Section affected: UPDATE

• Book I 2.5.1 Condition Register Logical Instructions
• Book I 3.3.13 Fixed-Point Logical Instructions
• Appendix E Power ISA sorted by opcode
• Appendix F Power ISA sorted by version
• Appendix G Power ISA sorted by Compliancy Subset
• Appendix H Power ISA sorted by mnemonic

Summary

Instructions added

• ternlogi – GPR Ternary Logic Immediate
• crternlogi – Condition Register Field Ternary Logic Immediate
• binlog – GPR Dynamic Binary Logic
• crbinlog – Condition Register Field Dynamic Binary Logic

Submitter: Luke Leighton (Libre-SOC)

Requester: Libre-SOC

Impact on processor:

• Addition of two new GPR-based instructions
• Addition of two new CR-field-based instructions

Impact on software:

• Requires support for new instructions in assembler, debuggers, and related tools.

Keywords:

GPR, CR-Field, bit-manipulation, ternary, binary, dynamic, look-up-table (LUT), FPGA, JIT

Motivation

• ternlogi is similar to existing and/or/xor/etc. instructions, but allows any arbitrary 3-input 1-output bitwise operation.
This can be used to combine several instructions into one. E.g. A ˆ (~B & (C | A)) can become one instruction. This
can also be used to have one instruction for bitwise MUX (A & B) | (~A & C).

• binlog is like ternlogi except it supports any arbitrary 2-input 1-output bitwise operation, where the operation can be
selected dynamically at runtime. This operates similarly to a LUT in a FPGA.

• crternlogi is like ternlogi except it works with CRs instead of GPRs.
• crbinlog is like binlog except it works with CRs instead of GPRs. Likewise it is similar to a LUT in an FPGA.
• Combined these instructions save on instruction count and also help accelerate AI and JIT runtimes.

Notes and Observations:

• ternlogi is like the existing xxeval instruction, except operates on GPRs instead of VSRs and does not require VSX/VMX.
SFS and SFFS are comparatively compromised.

• SVP64/VSX may have different semantics from SVP64/SFFS. SVP64 orthogonality is compromised by a non-Vector-
considerate argument that if equivalent instructions are in VSX they do not have to be added to SFFS: they do.

• crternlogi is similar to the group of CR Operations (crand, cror etc) which have been identified as a Binary Lookup
Group, except an 8-bit immediate is used instead of a 4-bit one, and up to 4 bits of a CR Field may be computed at once,
saving at least 3 groups of CR operations.

• crbinlut is similar to the Binary Lookup Group of CR Operations except that the 4-bit lookup table comes from a CR
Field instead of from an Immediate. Also like crternlogi up to 4 bits may be computed at once.

Changes

Add the following entries to:

• Book I 2.5.1 Condition Register Logical Instructions
• Book I 3.3.13 Fixed-Point Logical Instructions
• Book I 1.6.1 and 1.6.2

1

https://libre-soc.org/openpower/sv/bitmanip/
https://libre-soc.org/openpower/sv/rfc/ls007/
https://bugs.libre-soc.org/show_bug.cgi?id=1017
https://git.openpower.foundation/isa/PowerISA/issues/117

GPR Ternary Logic Immediate </>
Add this section to Book I 3.3.13

TLI-form

0-5 6-10 11-15 16-20 21-28 29-30 31 Form
PO RT RA RB TLI XO Rc TLI-Form

• ternlogi RT, RA, RB, TLI (Rc=0)
• ternlogi. RT, RA, RB, TLI (Rc=1)

Pseudocode:

result <- (~RT & ~RA & ~RB & TLI[0]*64) | # 64 copies of TLI[0]
(~RT & ~RA & RB & TLI[1]*64) | # ...
(~RT & RA & ~RB & TLI[2]*64) |
(~RT & RA & RB & TLI[3]*64) |
(RT & ~RA & ~RB & TLI[4]*64) |
(RT & ~RA & RB & TLI[5]*64) |
(RT & RA & ~RB & TLI[6]*64) | # ...
(RT & RA & RB & TLI[7]*64) # 64 copies of TLI[7]

RT <- result

For each integer value i, 0 to 63, do the following.

Let j be the value of the concatenation of the
contents of bit i of RT, bit i of RB, bit i of RT.
The value of bit j of TLI is placed into bit i of RT.

See Table 145, "xxeval(A, B, C, TLI) Equivalent
Functions," on page 968 for the equivalent function
evaluated by this instruction for any given value of TLI.

Programmer’s Note: this is a Read-Modify-Write instruction on RT. A simple copy instruction may be used to achieve the effect of
3-in 1-out. The copy instruction should come immediately before ternlogi so that hardware may optionally Macro-Op Fuse them

Programmer’s note: This instruction is useful when combined with Matrix REMAP in “Inner Product” Mode, creating Warshall
Transitive Closure that has many applications in Computer Science.

Special registers altered:

CR0 (if Rc=1)

2

Condition Register Ternary Logic Immediate </>
Add this section to Book I 2.5.1

CRB-form

0.5 6.8 9.10 11.13 14.15 16.18 19.25 26.30 31 Form
PO BF msk BFA msk BFB TLI XO TLI CRB-Form

• crternlogi BF, BFA, BFB, BFC, TLI, msk

Pseudocode:

a <- CR[4*BF+32:4*BF+35]
b <- CR[4*BFA+32:4*BFA+35]
c <- CR[4*BFB+32:4*BFB+35]
ternary <- (~a & ~b & ~c & TLI[0]*4) | # 4 copies of TLI[0]

(~a & ~b & c & TLI[1]*4) | # 4 copies of TLI[1]
(~a & b & ~c & TLI[2]*4) | # ...
(~a & b & c & TLI[3]*4) |
(a & ~b & ~c & TLI[4]*4) |
(a & ~b & c & TLI[5]*4) |
(a & b & ~c & TLI[6]*4) | # ...
(a & b & c & TLI[7]*4)) # 4 copies of TLI[7]

do i = 0 to 3
if msk[i] = 1 then

CR[4*BF+32+i] <- ternary[i]

For each integer value i, 0 to 3, do the following.

Let j be the value of the concatenation of the
contents of bit i of CR Field BF, bit i of CR Field BFA,
bit i of CR Field BFB.

If bit i of msk is set to 1 then the value of bit j of TLI
is placed into bit i of CR Field BF.

Otherwise, if bit i of msk is a zero then bit i of
CR Field BF is unchanged.

See Table 145, "xxeval(A, B, C, TLI) Equivalent
Functions," on page 968 for the equivalent function
evaluated by this instruction for any given value of TLI.

If msk is zero an Illegal Instruction trap is raised.

Programmer’s Note: this instruction is a “masked” overwrite on CR Field BF. For each bit set in msk a Write is performed but
for each bit clear in msk the corresponding bit of BF is preserved. Overall this makes crbinlog a conditionally Read-Modify-Write
instruction on CR Field BF. A simple copy instruction may be used to achieve the effect of 3-in 1-out. The copy instruction
should come immediately before crternlogi so that hardware may optionally Macro-Op Fuse them

Special registers altered:

CR field BF

3

GPR Dynamic Binary Logic </>
Add this section to Book I 3.3.13

VA-form

0-5 6-10 11-15 16-20 21-25 26 27-31 Form
PO RT RA RB RC nh XO VA-Form

• binlog RT, RA, RB, RC, nh

Pseudocode:

if nh = 1 then lut <- (RC)[56:59]
else lut <- (RC)[60:63]
result <- (~RA & ~RB & lut[0]*64) |

(~RA & RB & lut[1]*64) |
(RA & ~RB & lut[2]*64) |
(RA & RB & lut[3]*64))

RT <- result

For each integer value i, 0 to 63, do the following.

If nh contains a 0, let lut be the four LSBs of RC
(bits 60 to 63). Otherwise let lut be the next
four LSBs of RC (bits 56 to 59).

Let j be the value of the concatenation of the
contents of bit i of RT with bit i of RB.

The value of bit j of lut is placed into bit i of RT.

Special registers altered:

None

Programmer’s Note:

Dynamic (non-immediate-based) Ternary Logic, suitable for FPGA-style LUT3 dynamic lookups and for JIT runtime acceleration,
may be emulated by appropriate combination of binlog and ternlogi, using the nh (next half) operand to select first and
second nibble:

compute r3 = ternlog(r4, r5, r6, table=r7)
compute the values for when r6[i] = 0:
binlog r3, r4, r5, r7, 0 # takes look-up-table from LSB 4 bits
compute the values for when r6[i] = 1:
binlog r4, r4, r5, r7, 1 # takes look-up-table from second-to-LSB 4 bits
mux the two results together: r3 = (r3 & ~r6) | (r4 & r6)
ternlogi r3, r4, r6, 0b11011000

4

Condition Register Field Dynamic Binary Logic </>
Add this section to Book I 2.5.1

CRB-form

0.5 6.8 9.10 11.13 14.15 16.18 19.25 26.30 31 Form
PO BF msk BFA msk BFB // XO // CRB-Form

• crbinlog BF, BFA, BFB, msk

Pseudocode:

a <- CR[4*BF+32:4*BFA+35]
b <- CR[4*BFA+32:4*BFA+35]
lut <- CR[4*BFB+32:4*BFB+35]
binary <- (~a & ~b & lut[0]*4) |

(~a & b & lut[1]*4) |
(a & ~b & lut[2]*4) |
(a & b & lut[3]*4))

do i = 0 to 3
if msk[i] = 1 then

CR[4*BF+32+i] <- binary[i]

For each integer value i, 0 to 3, do the following.

Let j be the value of the concatenation of the
contents of bit i of CR Field BF with bit i of CR Field BFA.

If bit i of msk is set to 1 then the value of bit j of
CR Field BFB is placed into bit i of CR Field BF.

Otherwise, if bit i of msk is a zero then bit i of
CR Field BF is unchanged.

If msk is zero an Illegal Instruction trap is raised.

Special registers altered:

CR field BF

Programmer’s Note: just as with binlut and ternlogi, a pair of crbinlog instructions followed by a merging crternlogi may be
deployed to synthesise dynamic ternary (LUT3) CR Field manipulation

Programmer’s Note: this instruction is a “masked” overwrite on CR Field BF. For each bit set in msk a Write is performed but
for each bit clear in msk the corresponding bit of BF is preserved. Overall this makes crbinlog a conditionally Read-Modify-Write
instruction on CR Field BF. A simple copy instruction may be used to achieve the effect of 3-in 1-out. The copy instruction
should come immediately before crternlogi so that hardware may optionally Macro-Op Fuse them

[[!tag standards]]

5

Forms </>
CRB-FORM </>
Add the following section to Book I 1.6.1

0	6	9	11	14	16	19	26	31
PO	BF	msk	BFA	msk	BFB	TLI	XO	TLI
PO	BF	msk	BFA	msk	BFB	//	XO	/

TLI-FORM </>
Add the following section to Book I 1.6.1

|0 |6 |11 |16 |21 |29 |31 |
| PO | RT | RA | RB | TLI | XO | Rc |

VA-FORM </>
Add the following entry to VA-FORM in Book I 1.6.1.12

|0 |6 |11 |16 |21 |26|27 |
| PO | RT | RA | RB | RC |nh| XO |

Word Instruction Fields </>
Add the following to Book I 1.6.2

msk (9:10,14:15)
Field used by crternlogi and crbinlut to decide which CR Field bits to
modify.
Formats: CRB

nh (26)
Nibble High. Field used by binlog to decide if the look-up-table should
be taken from bits 60:63 (nh=0) or 56:59 (nh=1) of RC.
Formats: VA

TLI (21:28)
Field used by the ternlogi instruction as the
look-up table.
Formats: TLI

TLI (21:25,19:20,31)
Field used by the crternlogi instruction as the
look-up table.
Formats: CRB

• Add TLI to the Formats: list of all of RA, RB, RT, and Rc.
• Add CRB to the Formats: list of all of BF, BFA, BFB, and BFC.
• Add TLI to the Formats: list of XO (29:30).
• Add CRB to the Formats: list of XO (26:31).
• Add VA to the Formats: list of XO (27:31).

Appendices </>
Appendix E Power ISA sorted by opcode
Appendix F Power ISA sorted by version
Appendix G Power ISA sorted by Compliancy Subset
Appendix H Power ISA sorted by mnemonic

Form Book Page Version mnemonic Description
TLI I # 3.2B ternlogi GPR Ternary Logic Immediate
VA I # 3.2B binlog GPR Binary Logic
CRB I # 3.2B crternlogi CR Field Ternary Logic Immediate
CRB I # 3.2B crbinlog CR Field Binary Logic

[[!tag opf_rfc]]

6

	RFC ls007 Ternary/Binary GPR and CR Field bit-operations </>
	GPR Ternary Logic Immediate </>
	Condition Register Ternary Logic Immediate </>
	GPR Dynamic Binary Logic </>
	Condition Register Field Dynamic Binary Logic </>

	Forms </>
	CRB-FORM </>
	TLI-FORM </>
	VA-FORM </>
	Word Instruction Fields </>

	Appendices </>

