The Libre-SOC Hybrid 3D CPU

Augmenting the OpenPOWER ISA
to provide 3D and Video instructions
(properly and officially)

[proposed for] OpenPOWER Summit 2020

Sponsored by NLnet's PET Programme
September 10, 2020

enneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Why another SoC?

Intel Management Engine, QA issues, Spectre

v

v

Endless proprietary drivers
(affects product development cost)

» Opportunity to drastically simplify driver development
and engage in "long-tail” markets

Because for 30 years | Always Wanted To Design A CPU

v

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Why OpenPOWER? (but first: Evaluation Criteria)

» Good ecosystem essential
linux kernel, u-boot, compilers, OSes,
Reference Implementation(s)

» Supportive Foundation and Members
need to be able to submit ISA augmentations

(for proper peer review)

» No NDAs, full transparency must be acceptable
due to being funded under NLnet's PET Programme

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Why OpenPOWER?

» RISC-V: closed secretive mailing lists, closed secretive
ISA Working Groups, no acceptance of transparency
requirements, not well-established enough

» MIPS Open Initiative website was offline

» ARM and x86 are proprietary (x86 too complex)

» OpenRISC 1200 not enough adoption

» Nyuzi GPU too specialist (not a general-purpose ISA)

» MIAOW GPU is not a GPU (it's an AMD Vector Engine)
» "rolling your own" out of the question (20+ man-years)

» OpenPOWER: established for decades, excellent Foundation,
Microwatt as Reference, approachable and friendly.

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

What goes into a typical SoC?

» 15 to 20mm BGA package: 2.5 to 5 watt power consumption
heat sink normally not required (simplifies overall design)

» Fully-integrated peripherals (not Northbridge/Southbridge)
USB, HDMI, RGB/TTL, SD/MMC, 12C, UART, SPI, GPIO
etc. etc.

» Built-in GPU (shared memory bus, 3rd party licensed)

» Build-in VPU (likewise)

» Target price between $2.50 and $30 depending on market
Radically different from IBM POWER9 Core (200 Watt)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Simple SBC-style SoC

Kazan3D:
Video Vulkan-LLVM
Processing OpenGL ES2
Blocks OpenMP

AXIl / Wishbone Bus / Bridges

[|

(]
1x FlexBus 3x PWM 2x UART (4wire)
32x EINT 1x RGMII 3x UART (2-wire)

DDR3 2x AC97/I2S 3x SDMMC 3x 12C
DDR4 1x JTAG 2X SPI
XSPI 2x RGB/TTL 1x QSPI 4-way pinmux 157 pins

1x eMMC 3x USB-ULPI 324 pins total (1x DDR)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Where to start? (roadmap)

> First thing: get a basic core working on an FPGA
(use Microwatt as a reference)

» Next: create a low-cost test ASIC (180nm).
(first OpenPOWER ASIC since IBM's POWER9, 10 years ago)

» (in parallel): Develop Vector ISA with 3D and Video
extensions, under watchful eye of OpenPOWER Foundation

» Implement Vector ISA in simulator, then HDL, then FPGA
and finally (only when ratified by OPF) into silicon

» Sell chips, make $$$.

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

What's different about Libre-SOC?

» Hybrid - integrated. The CPU is the GPU.
The GPU is the CPU. The VPU is the CPU.
There is No Separate VPU/GPU Pipeline

» written in nmigen (a python-based HDL). Not VHDL
not Verilog (definitely not Chisel3/Scala)
This is an extremely important strategic decision.

» Simple-V Vector Extension. See "SIMD Considered harmful”.
SV effectively a "hardware for-loop” on standard scalar ISA
(conceptually similar to Zero-Overhead Loops in DSPs)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Hybrid Architecture: Augmented 6600

» CDC 6600 is a design from 1965. The augmentations are not.
Help from Mitch Alsup includes precise exceptions,
multi-issue and more. Academic literature on 6600 utterly
misleading. 6600 Scoreboards completely underestimated
(Seymour Cray and James Thornton solved problems they
didn't realise existed elsewhere!)

» Front-end Vector ISA, back-end " Predicated (masked) SIMD"
nmigen (python OO) strategically critical to achieving this.

» Out-of-order combined with Simple-V allows scalar operations
at the developer end to be turned into SIMD at the back-end
without the developer needing to do SIMD

» |IEEE754 sin / cos / atan2, Texturisation opcodes, YUV2RGB
all automatically vectorised.

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Why nmigen? (but first: evaluate other HDLs)

» Verilog: designed in the 1980s purely for doing unit tests (!)

» VHDL: again, a 1980s-era " Procedural” language (BASIC,
Fortran). Does now have "records” which is nice.

» Chisel3 / Scala: OO, but very obscure (20th on index)
> pyrtl: not large enough community
» MyHDL: subset of python only

» Slowly forming a set of criteria: must be OO (python), must
have wide adoption (python), must have good well-established
programming practices already in place (python), must be
easy to learn (python)

» HDL itself although a much smaller community must have the
same criteria. Only nmigen meets that criteria.

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Why nmigen?

» Uses python to build an AST (Abstract Syntax Tree).
Actually hands that over to yosys (to create ILANG file) after
which verilog can (if necessary) be created

» Deterministic synthesiseable behaviour (Signals are declared
with their reset pattern: no more forgetting "if rst” block).

» python OO programming techniques can be deployed. classes
and functions created which pass in parameters which change
what HDL is created (IEEE754 FP16 / 32 / 64 for example)

> python-based for-loops can e.g. read CSV files then generate
a hierarchical nested suite of HDL Switch / Case statements
(this is how the Libre-soc PowerISA decoder is implemented)

» extreme OO abstraction can even be used to create "dynamic
partitioned Signals” that have the same operator-overloaded
"add”, "subtract”, "greater-than” operators

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

nmigen (dynamic) vs VHDL (static)

power_op_tupes = {'function_unit's Function,

‘internal _op't M]crﬂp, unit_t. (NOME, ALU, LDST):

“farm's Form, length_t. (MONE, 1s1B. is2B, is4B, is8B):
‘asmcode's 8,

tind_zel': InlSel, decode_ron_t.

‘in2_sel's In2Sel, unit unit_t:

‘in3_sel't In3Sel, insn_type insn_type_t:

out_ssl's OutSel, input_reg_a 3 input_reg a_t:
cr_in's CRInSel, input_reg_b 1 input_req b t:
cr_out't CROutSel, input_reg_c i input_reg_c_t:
‘ldst_len't Ldstlen, output_reg_a @ output_reg a t
‘upd'y LDSTHode,
‘e sel': RC. input._cr 3 std_ulogics
}I'CPU in'z Cryln output_cr 1 std_ulogice
irvert_a 2 std_ulogics
PowerOp} imvert_out 3 std_ulogic:
__init__[self, incl_asw=Trus, name=fons, subset=Mone): input_carry 1 carry_in_t:
self.subset = subset output_carry 3 std ulogic:
debug_report = ==t}
fields = ==t() -- load/store signals
field, ptuype power_op_types, items(}: length 3 length_t:
fields,add(field) byte_reverse $ =td_ulogic:
subset field subset: sign_extend @ =td ulogic:
update 3 std_ulogics
fname = get_pname(field, name) reserve 2 std_ulogics
setattr(self, field, Signaliptype, reset_less=True, name=fname))
debug_report.,add(Field) — nultiplier and ALU signals
bit zingle_bit_flags: iz 32bit 1 std_ulogice
field = get_signal_name(bit) is_signed 3 std_ulogics
fields,add(field)
subset field subsety re 3 oro_tr
1 % std_ulogics

debug_repart.add(Field)
fname = get_pname(field, name)} sgl_pipe 3 std_ulogicy
zetattr(self, field, Signalireset_less=True, name=fname)) B

print ("Power(p debug”, name, debug_report)

print (" Fields', fislds)

_eqlself, rowstone):
Hones
row = default_values
TO00: this conversion process from a dict to an ohject
should really be dore uzing e.g. namedtuple and then

e Kenneth Casson Leighton bre-SOC Hybrid 3D CPU

nmigen PowerlSA Decoder

fre s wiertva Wi AT

= Netes roformat ith colum -t -0 * |
de_op_31_array 3 op_3l_subop_arraut i~ (
i

nit internal il i oy
- op i au
2501000010108 AU, OP_ADD, RA, . 0, %0, gk,
2411000010108 ALU. OPDADD, RA, RT, 000 . zER0;
2400000010108 AU, OPDADD, RA, . ZR0,
2410000010108 ALU. oPDADD, RA, B ONE, RT,
2400100010108 LU, OPLADD, RA,
2410100010108 AU, oPDADD, RA,

U, i, h,

U, OPLADDGES, RA,

U, oD, h,
5 " U, OPoADD, RA,

U, oD, A,
5 " U, oPoADD, RA,

U, oeDaND; NOE,

U, 0PAND, NOME,

. OPLEPERM, NONE,
2401001110108 LU, OPZECD, NOME,
2401000110108 ALU; OPZECD, e,

T
i " U, OPEIPB, N[INE,

U; oPLCHPEGE,

U, OPEIP, RR

. OPLEHPRE,
e " U, 0PNz, N[INE

U, oIz,

TP NDNE

U, ooz,
241011110011# AU, OPLIARN, NDNE
40 o g i

cnprt
LOGTERL 0P :mz RS N[INE N[INE M0 CR0.0.0
LOGICAL 0P 0 {ONE RA NONE ,CR0,0, 0.
L OCLER O CNTZ R N MNE NV 50.0.0.
LOGICAL 0P CNTZ_ RS NONE NONE R NONE ,CR0,0, 0

 darn, X
655 A EHE FONE, NDAE NOYE NONE 0,0, ZERD, 0, NONE, NONE, 0,1, ebf ¥
060000110110, ALU 0F_NOP NONE NONE NONE NONE, RONE ,NONE 0, 0,0,NONE, 0,1, debst, ¥
(060100610110 ALU0P_NOP NONE NONE NONE_NONE NONE _NONE 0, 0, ZERD, 0_NONE 0, 00,00, 0_NONE, 0,1, clcbt &
LU 0P _NOP JNONE , NONE NONE NNE NONE _NONE 1 bt X

DN 0200:0-1 4R 00 chmeort0

oetiototols 1y, np,mvg R4, RB, NONE T ot 1R
L fx0, Nnusooooooncoommuxn

DIV RALRE !

i
LU, OF_EXTS RS, NOWE HONE, R, NONE, £R0,0, 0, ZERD,0, i51B,
(0b1110011010, ALU, 0F_EXTS, RS, NONE , NONE R NONE ,CR0,0, 0, ZERD, 0,152,

E

[BL1L1011010, ALU0P EXTS, RS, NONE NONE R4 NOKE,CR0.0,0/ZERD, 0, 1545,

st R

son vpd rsrv 320 san

nmigen PowerlSA Decoder

PRIMARY FUMCTION SPECIFYIMG THE FULL FOWER DECODER

create_pdscode(name=Hone, col_subset=Hone, row_subsst=Nons)
“""ereate_pdscode - creates a cascading hisrarchical POWER [5A decoder

subsetting of the Powerflp decoding is possible by setting col subset

* hirer 13 hes extrs patterns

mlﬁ “ppend(Subdzcader(pattern=19, opoadss=ast _cou "ninar_13,ce")
opint=True, bitsel=(l, 11), suffix=ions,
subdecoder‘F[]))

w19, append{ Subdecoder{pattern=19, opcodessget_cswl *minar_13_00000.csv"),
opint=lrie, bitsel=(, B), suffixsilone,
subdecoders=[]})

minor opoodes.
priner <

Suhde:nder(pattarn-SO opeades=get_csu(‘winor_20.c5v"),
rue, bitsel=(l, £}, suffixeiicns, subdecoders=(1},
=31, oprodes=oet_csv("miner_31,csv”
e, bitsal={1, 11), suffix=0b00i0t, subdecoders=[1),
55, nprodessget_csu{ minor 58,050},
1) bitsel=(0, 2), suffixeflore, subdecoders=l1),
Subeoader (ppthormit, opeodessant ooyl miner B2.car

opint=Tric, bitsel=(0, 2}, suffix=ione, subdesodars=[1},

Subde:uder(patter

Suhde:nder(pamar

1

4 top level: extra nerged with major

dec =

opoodes = get_csv{"najor,csu')

et sppend (Suhdusoder (patbanelions , pint=True, opeodes=opcadss
Bitoela(zs, 220, sufFiseilr. suideoadrecpninor))

opeodes = get_cev("extra.cay')

dec, append(Subdscoder{pat tern=iions, opint=Falos, opoodes=opoodes,
bitsel=(0, 32], suffixelone, subdscoders=[11)

TopPouerlecoder(32, dec, name=nane, col_subset=col subset,
row_subset=rou_subset,}

re-SOC Hybrid 3D CPU

ke Kenneth Casson Leighton

Why another Vector ISA? (or: not-exactly another)

Simple-V is a 'register tag' system. There are no opcodes
SV 'tags’ scalar operations (scalar regfiles) as 'vectorised’

(PowerISA SIMD is around 700 opcodes, making it unlikely to
be able to fit a PowerlSA decoder in only one clock cycle)

Effectively a "hardware sub-counter for-loop’: pauses the PC
then rolls incrementally through the operand register numbers
issuing multiple scalar instructions into the pipelines

(hence the reason for a multi-issue OoO microarchitecture)

Current and future PowerlISA scalar opcodes inherently and
automatically become 'vectorised' by SV without needing an
explicit new Vector opcode.

Predication and element width polymorphism are also 'tags’.
elwidth polymorphism allows for FP16 / 80 / 128 to be added
to the ISA without modifying the ISA

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Simple-V ADD in a nutshell

function op_add(rd, rsl, rs2, predr) # add not VADD!
int i, id=0, irs1=0, irs2=0;
for (i = 0; 1 < VL; i++)
if (ireglpredr] & 1<<i) # predication uses intregs
ireg[rd+id] <= ireglrsil+irsl] + ireglrs2+irs2];
if (reg is_vectorised[rd]) { id += 1; }
if (reg_is_vectorised[rs1]) { irsl += 1; }
if (reg_-is_vectorised[rs2]) { irs2 += 1; }

’

» Above is oversimplified: Reg. indirection left out (for clarity).
» SIMD slightly more complex (case above is elwidth = default)
> Scalar-scalar and scalar-vector and vector-vector now all in one
» 000 may choose to push ADDs into instr. queue (v. busy!)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

» Goal is to create a mass-volume low-power embedded SoC
suitable for use in netbooks, chromebooks, tablets,
smartphones, loT SBCs.

» No DRM. 'Trustable’ (by the users, not by Media Moguls)
design ethos as a business objective: requires full transparency
as well as Formal Correctness Proofs

» Collaboration with OpenPOWER Foundation and Members
absolutely essential. No short-cuts. Standards to be developed
and ratified so that everyone benefits.

» Working on the back of huge stability of POWER ecosystem

» Combination of which is that Board Support Package is 100%
upstream, app and product development by customer is
hugely simplified and much more attractive

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

The end
Thank you

Questions?

v

Discussion: Libre-SOC-dev mailing list
Freenode IRC #libre-soc
http://libre-soc.org/
http://nlnet.nl/PET

v

v

v

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

