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Why Formal Verification?

@ A tool for finding bugs

@ Complementary to simulation

@ Helps finding corner cases

@ ... triggered by specific sequences of events
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Comparison with traditional debugging concepts

formal traditional

Cover Simulation
Bounded Model Check Unit test
k-Induction Test fixture?
Exhaustive search random test cases
synthesizable test-bench can be procedural
“assume” inputs test vectors
“assert” outputs “assert” outputs
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Workflow

@ HDL: includes assertions
@ SBY: work plan, drives the process

@ Yosys: synthesizes to logic functions:

e state s: contents of all registers and inputs
e initial predicate: /(s)

o transition relation T(sy,s;)

o assertions: P(s)

@ yosys-smtbmc: proves correctness or outputs a trace

e exhaustive search for a path from the initial state to a bad state
e if not found, the design is correct
e if found, output an error trace
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Unbounded inductive proof

@ bad trace:
/(So)P(So) VAN T(So, Sl)P(Sl) VANREIWAN T(Sk_l, Sk)P(Sk)
ek« 0
@ base case: no path from initial state leads to a bad state in k
steps

o if base case fails, report the bad trace

@ inductive case: no path ending in a bad state can be reached in
k+1 steps

o if inductive case fails, k < k + 1 and repeat

@ otherwise, proof is complete, circuit is safe.
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Single register with feedback
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Registered output with internal state
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Registered output with enable

Cesar Strauss Introduction to Formal Verification of Digital Circuits



Flip-flop with input
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Verifying a flip-flop
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Complete flip-flop with input and enable
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Code for simple register with feedback

module simple(input clk);
reg r = 0;

always @(posedge clk)
r <=r;

“ifdef FORMAL
always O

assert(!r);
“endif
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SBY drive file

[options]
mode prove
depth 1

[engines]
smtbmc yices

[script]
read_verilog -formal simple.v
prep —top simple

[files]
simple.v
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Output (simplified)

$ sby simple.sby

induction: Trying induction in step 1..
induction: Trying induction in step O..
induction: Temporal induction successful.

basecase: Checking assumptions in step O..

basecase: Checking assertions in step O..

basecase: Status: passed

summary: engine_O (smtbmc yices) returned pass
for induction

summary: engine_O (smtbmc yices) returned pass
for basecase

summary: successful proof by k-induction.

DONE (PASS, rc=0)
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Flip flop with enable (1/2)

from nmigen.asserts import Assert, Assume, Past
from nmutil.formaltest import FHDLTestCase
from nmigen import Signal, Module

import unittest

class Formal (FHDLTestCase) :
def test_enable(self):
m = Module()
rl = Signal()
r2 = Signal()
s = Signal()
en = Signal()
m.d.sync += [r2.eq(rl), rl.eq(r2)]
with m.If(en):
m.d.sync += s.eq(rl & r2)
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Flip flop with enable (2/2)

m.d.comb += Assert(~s)

m.d.sync += Assume(Past(en) | en)

m.d.comb += Assert(~rl & ~r2)
self.assertFormal (m, mode="prove", depth=5)

if __name__ == '__main__

unittest.main()
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Induction failure example

summary: engine_O returned pass for basecase

summary: engine_O returned FAIL for induction
DONE (UNKNOWN, rc=4)

signals Waves

Time

clk
en
ri
r2
s

rst
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Verifying memories with a “victim address”

addr_any

data_captured
data_captured 4

data_w > data_r E

address Mem

memadar any)

\ 28

wen
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Verifying streams with transaction counters

count_s
count_b
count_a
stream_a >
pipelined jLStréam._sy
stream_b 5 ALU

instr A
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Dynamic SIMD

exp-a : ....0....0....0.... 1x 32-bit
exp-a R ...0....1.... 1x 24-bit plus 1x 8-bit
exp-a : ....0....01....0.... 2x 16-bit

o
=

exp-a :o..o 1000010000000, 2x 8-bit, 1x 16-bit
exp-a :oooaalolli1ooo01. .. 4x 8-bit
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The End
Thank you

Questions?

Discussion: http://lists.libre-soc.org

Libera IRC #libre-soc

http://libre-soc.org/

https://libre-soc.org/resources/

http://nlnet.nl/entrust
https://libre-soc.org/nlnet_2022_ongoing/
https://libre-soc.org/nlnet/#faq

https://git.libre-
soc.org/?p=soc.git;a=tree;f=src/soc/experiment/formal;hb=HEAD
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