Introduction to Formal Verification of Digital

Circuits

Cesar Strauss

FOSDEM 2024

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Why Formal Verification?

@ A tool for finding bugs

@ Complementary to simulation

@ Helps finding corner cases

@ ... triggered by specific sequences of events

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Comparison with traditional debugging concepts

formal traditional

Cover Simulation
Bounded Model Check Unit test
k-Induction Test fixture?
Exhaustive search random test cases
synthesizable test-bench can be procedural
“assume” inputs test vectors
“assert” outputs “assert” outputs

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Workflow

@ HDL: includes assertions
@ SBY: work plan, drives the process

@ Yosys: synthesizes to logic functions:

e state s: contents of all registers and inputs
e initial predicate: /(s)

o transition relation T(sy,s;)

o assertions: P(s)

@ yosys-smtbmc: proves correctness or outputs a trace

e exhaustive search for a path from the initial state to a bad state
e if not found, the design is correct
e if found, output an error trace

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Unbounded inductive proof

@ bad trace:
/(So)P(So) VAN T(So, Sl)P(Sl) VANREIWAN T(Sk_l, Sk)P(Sk)
ek« 0
@ base case: no path from initial state leads to a bad state in k
steps

o if base case fails, report the bad trace

@ inductive case: no path ending in a bad state can be reached in
k+1 steps

o if inductive case fails, k < k + 1 and repeat

@ otherwise, proof is complete, circuit is safe.

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Single register with feedback

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Registered output with internal state
T
R S

-

<D 8

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Registered output with enable

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Flip-flop with input
i
R
<D
\J

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Verifying a flip-flop

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Complete flip-flop with input and enable

Introduction to Formal Verification of Digital Circuits

Code for simple register with feedback

module simple(input clk);
reg r = 0;

always @(posedge clk)
r <=r;

“ifdef FORMAL
always O

assert(!r);
“endif

Cesar Strauss Introduction to Formal Verification of Digital Circuits

SBY drive file

[options]
mode prove
depth 1

[engines]
smtbmc yices

[script]
read_verilog -formal simple.v
prep —top simple

[files]
simple.v

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Output (simplified)

$ sby simple.sby

induction: Trying induction in step 1..
induction: Trying induction in step O..
induction: Temporal induction successful.

basecase: Checking assumptions in step O..

basecase: Checking assertions in step O..

basecase: Status: passed

summary: engine_O (smtbmc yices) returned pass
for induction

summary: engine_O (smtbmc yices) returned pass
for basecase

summary: successful proof by k-induction.

DONE (PASS, rc=0)

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Flip flop with enable (1/2)

from nmigen.asserts import Assert, Assume, Past
from nmutil.formaltest import FHDLTestCase
from nmigen import Signal, Module

import unittest

class Formal (FHDLTestCase) :
def test_enable(self):
m = Module()
rl = Signal()
r2 = Signal()
s = Signal()
en = Signal()
m.d.sync += [r2.eq(rl), rl.eq(r2)]
with m.If(en):
m.d.sync += s.eq(rl & r2)

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Flip flop with enable (2/2)

m.d.comb += Assert(~s)

m.d.sync += Assume(Past(en) | en)

m.d.comb += Assert(~rl & ~r2)
self.assertFormal (m, mode="prove", depth=5)

if __name__ == '__main__

unittest.main()

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Induction failure example

summary: engine_O returned pass for basecase

summary: engine_O returned FAIL for induction
DONE (UNKNOWN, rc=4)

signals Waves

Time

clk
en
ri
r2
s

rst

Cesar Strauss

Introduction to Formal Verification of Digital Circuits

Verifying memories with a “victim address”

addr_any

data_captured
data_captured 4

data_w > data_r E

address Mem

memadar any)

\ 28

wen

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Verifying streams with transaction counters

count_s
count_b
count_a
stream_a >
pipelined jLStréam._sy
stream_b 5 ALU

instr A

Cesar Strauss Introduction to Formal Verification of Digital Circuits

Dynamic SIMD

exp-a :0....0....0.... 1x 32-bit
exp-a R ...0....1.... 1x 24-bit plus 1x 8-bit
exp-a :0....01....0.... 2x 16-bit

o
=

exp-a :o..o 1000010000000, 2x 8-bit, 1x 16-bit
exp-a :oooaalolli1ooo01. .. 4x 8-bit

Cesar Strauss Introduction to Formal Verification of Digital Circuits

The End
Thank you

Questions?

Discussion: http://lists.libre-soc.org

Libera IRC #libre-soc

http://libre-soc.org/

https://libre-soc.org/resources/

http://nlnet.nl/entrust
https://libre-soc.org/nlnet_2022_ongoing/
https://libre-soc.org/nlnet/#faq

https://git.libre-
soc.org/?p=soc.git;a=tree;f=src/soc/experiment/formal;hb=HEAD

Cesar Strauss Introduction to Formal Verification of Digital Circuits

