big integer multiply $</>$

links

- http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
- https://lists.libre-soc.org/pipermail/libre-soc-dev/2022-April/004700.html
- https://news.ycombinator.com/item?id=21151646

Variant $1</>$

Row-based multiply using temporary vector. Simple implementation of Knuth M: https://git.libre-soc.org/?p=libreriscv.git;a= blob;f=openpower/sv/bitmanip/mulmnu.c;hb=HEAD

```
for (i = 0; i < m; i++) {
    unsigned product = u[i]*v[j] + w[i + j];
    phi[i] = product>>16;
    plo[i] = product;
}
for (i = 0; i < m; i++) {
    t = (phi[i]<<16) | plo[i] + k;
    w[i + j] = t; // (I.e., t & OxFFFF).
    k = t >> 16;
}
```

maddx RT, RA, RB, RC ($\mathrm{RS}=\mathrm{RT}+\mathrm{VL}$ for $\mathrm{SVP} 64, \mathrm{RS}=\mathrm{RT}+1$ for scalar)

```
prod[0:127] = (RA) * (RB)
sum[0:127] = EXTZ(RC) + prod
```

RT <- sum[64:127]
RS <- sum [0:63]
addxd RT, RA, RB (RS=RB+VL for SVP64, $\mathrm{RS}=\mathrm{RB}+1$ for scalar)
$\operatorname{cat}[0: 127]=(R S) \|$ (RB)
$\operatorname{sum}[0: 127]=$ cat $+\operatorname{EXTZ}(R A)$
$\mathrm{RA}=\operatorname{sum}[0: 63]$
RT $=\operatorname{sum}[64: 127]$

These two combine as, simply:

```
# assume VL=8, therefore RS starts at r8.v
# q : r16
# multiplier : r17
# multiplicand: r20.v
# carry : r18
li r18,0
sv.maddx r0.v, r16, r17, r20.v
# here, RS=RB+VL, therefore again RS starts at r8.v
sv.addxd r0.v, r18, r0.v
```

Variant $2</>$

```
for (i = 0; i < m; i++) {
    unsigned product = u[i]*v[j] + k;
    k = product>>16;
    plo[i] = product; // & Oxffff
}
k = 0;
for (i = 0; i < m; i++) {
    t = plo[i] + w[i + j] + k;
    w[i + j] = t; // (I.e., t & 0xFFFF).
    k = t >> 16; // carry: should only be 1 bit
}
```

maddx RT, RA, RB, RC
$\operatorname{prod}[0: 127]=(\mathrm{RA}) *(\mathrm{RB})$
$\operatorname{sum}[0: 127]=\operatorname{EXTZ}(R C)+\operatorname{prod}$
RT <- sum [64:127]
RC <- sum [0:63]

big integer division $</>$

links

- https://skanthak.homepage.t-online.de/division.html
- https://news.ycombinator.com/item?id=26562819
- https://gmplib.org/~tege/division-paper.pdf
- https://github.com/Richard-Mace/huge-integer-class/blob/master/HugeInt.cpp nice-looking well-commented c++ implementation
- https://lists.libre-soc.org/pipermail/libre-soc-dev/2022-April/004739.html
- https://github.com/bcoin-org/libtorsion/blob/master/src/mpi.c\#L2872
the most efficient division algorithm is probably Knuth's Algorithm D (with modifications from the exercises section of his book) which is $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ and uses 2 N -by-N-bit div/rem
an oversimplified version of the knuth algorithm d with 32-bit words is: (TODO find original: https://raw.githubusercontent. com/hcs0/Hackers-Delight/master/divmnu64.c.txt

```
void div(uint32_t *n, uint32_t *d, uint32_t* q, int n_bytes, int d_bytes) {
    // assumes d[0] != 0, also n, d, and q have their most-significant-word in index 0
    int q_bytes = n_bytes - d_bytes;
    for(int i = 0; i < q_bytes / sizeof(n[0]); i++) {
        // calculate guess for quotient word
        q[i] = (((uint64_t)n[i] << 32) + n[i + 1]) / d[0];
        // n -= q[i] * d
        uint32_t carry = 0, carry2 = 0;
        for(int j = d_bytes / sizeof(d[0]) - 1; j >= 0; j--) {
            uint64_t v = (uint64_t)q[i] * d[j] + carry;
            carry = v >> 32;
            v = (uint32_t)v;
            v = n[i + j] - v + carry2;
            carry2 = v >> 32; // either ~0 or 0
            n[i + j] = v;
        }
        // fixup if carry2 != 0
    }
    // now remainder is in n and quotient is in q
}
```

The key loop may be implemented with a 4 -in, 2-out mul-twin-add (which is too much):
On Sat, Apr 16, 2022, 22:06 Jacob Lifshay programmerjake@gmail.com wrote:
and a mrsubcarry (the one actually needed by bigint division):
\# for big_c - big_a * word_b
result <- RC + ~ (RA * RB) + CARRY \# wrong, needs further thought
CARRY <- HIGH_HALF (result)
RT <- LOW_HALF (result)
turns out, after some checking with 4-bit words, afaict the correct
algorithm for mrsubcarry is:
\# for big_c - big_a * word_b
result <- RC + ~(RA * RB) + CARRY
result_high <- HIGH_HALF (result)
if CARRY <= 1 then \# unsigned comparison
result_high <- result_high + 1
end
CARRY <- result_high
RT <- LOW_HALF (result)
afaict, that'll make the following algorithm work:
so the inner loop in the bigint division algorithm would end up being (assuming n, d, and q all fit in registers):

```
li r3, 1 # carry in for subtraction
mtspr CARRY, r3 # init carry spr
setvl loop_count
sv.mrsubcarry rn.v, rd.v, rq.s, rn.v
```

This algorithm may be morphed into a pair of Vector operations by temporary storage of the products.

```
uint32_t borrow = 0;
for(int i = 0; i <= n; i++) {
    uint32_t vn_i = i < n ? vn[i] : 0;
    uint64_t value = un[i + j] - (uint64_t)qhat * vn_i;
    plo[i] = value & 0xfffffffffLL;
    phi[i] = value >> 32;
}
for(int i = 0; i <= n; i++) {
    uint64_t value = (((uint64_t)phi[i]<<32) | plo[i]) - borrow;
    borrow = ~(value >> 32)+1; // -(uint32_t)(value >> 32);
    un[i + j] = (uint32_t)value;
```

bool need_fixup = borrow $!=0$;
Transformation of 4-in, 2-out into a pair of operations:

- 3-in, 2-out msubx RT, RA, RB, RC producing $\{\mathrm{RT}, \mathrm{RS}\}$ where $\mathrm{RS}=\mathrm{RT}+\mathrm{VL}$
- 3-in, 2-out subxd RT, RA, RB a hidden $\mathrm{RS}=\mathrm{RT}+\mathrm{VL}$ as input, RA dual

A trick used in the DCT and FFT twin-butterfly instructions, originally borrowed from lq and LD/ST-with-update, is to have a second hidden (implicit) destination register, RS. RS is calculated as RT +VL , where all scalar operations assume VL=1. With sv.msubx creating a pair of Vector results, sv.weirdaddx correspondingly has to pick the pairs up, containing the split lo-hi 128-bit products, in order to carry on the algorithm.
msubx RT, RA, RB, RC (RS=RT+VL for SVP64, RS=RT+1 for scalar)
$\operatorname{prod}[0: 127]=(\mathrm{RA}) *(\mathrm{RB})$
$\operatorname{sub}[0: 127]=\operatorname{EXTZ}(R C)-\operatorname{prod}$
RT <- sub[64:127]
RS <- sub[0:63]
subxd RT, RA, RB ($\mathrm{RS}=\mathrm{RB}+\mathrm{VL}$ for $\mathrm{SVP} 64, \mathrm{RS}=\mathrm{RB}+1$ for scalar)
$\operatorname{cat}[0: 127]=(\mathrm{RS}) \|$ (RB)
$\operatorname{sum}[0: 127]=$ cat $-\operatorname{EXTS}(R A)$
RA $=\sim \operatorname{sum}[0: 63]+1$
RT $=\operatorname{sum}[64: 127]$
These two combine as, simply:
\# assume VL=8, therefore RS starts at r8.v
\# q : r16
\# dividend: r17
\# divisor : r20.v
\# carry : r18
li r18, 0
sv.msubx r0.v, r16, r17, r20.v
\# here, RS=RB+VL, therefore again RS starts at r8.v
sv.subxd r0.v, r18, r0.v
As a result, a big-integer subtract and multiply may be carried out in only 3 instructions, one of which is setting a scalar integer to zero.
An Rc=1 variant tests not against RT but RA, which allows detection of a fixup in Knuth Algorithm D: the condition where RA is not zero.

