Power ISA™
Version 3.0 B

March 29, 2017

.|l|

Version 3.0 B

IBMe

© Copyright International Business Machines
Corporation 1994 - 2017. All rights reserved.

Printed in the United States of America March, 2017

By downloading the POWER® Instruction set Architec-
ture (“ISA”) Specification, you agree to be bound by the
terms and conditions of this agreement.

IBM, the IBM logo, and ibm.com are trademarks or reg-
istered trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other
product and service names might be trademarks of IBM
or other companies. A current list of IBM trademarks is
available on the Web at “Copyright and trademark infor-
mation” at www.ibm.com/legal/copytrade.shtml.

Other company, product, and service names may be
trademarks or service marks of others.

All information contained in this document is subject to
change without notice. The products described in this
document are NOT intended for use in applications
such as implantation, life support, or other hazardous
uses where malfunction could result in death, bodily
injury, or catastrophic property damage. The informa-
tion contained in this document does not affect or
change IBM product specifications or warranties. Noth-
ing in this document shall operate as an express or
implied license or indemnity under the intellectual prop-
erty rights of IBM or third parties. All information con-
tained in this document was obtained in specific
environments, and is presented as an illustration. The
results obtained in other operating environments may
vary.

While the information contained herein is believed to be
accurate, such information is preliminary, and should
not be relied upon for accuracy or completeness, and
no representations or warranties of accuracy or com-
pleteness are made.

Note: This document contains information on products
in the design, sampling and/or initial production phases
of development. This information is subject to change
without notice. Verify with your IBM field applications
engineer that you have the latest version of this docu-
ment before finalizing a design.

You may use this documentation solely for developing
technology products compatible with Power Architec-
ture® in support of growing the POWER ecosystem.
You may not modify this documentation. You may dis-
tribute the documentation to suppliers and other con-
tractors hired by you solely to produce your technology
products compatible with Power Architecture® technol-
ogy and to your customers (either directly or indirectly
through your resellers) in conjunction with their use and
instruction of your technology products compatible with
Power Architecture® technology. This agreement
does not include rights to create a CPU design to run
the POWER ISA unless such rights have been granted

by IBM under a separate agreement. The POWER ISA
specification is protected by copyright and the practice
or implementation of the information herein may be pro-
tected by one or more patents or pending patent appli-
cations. No other license, express or implied, by
estoppel or otherwise to any intellectual property rights
is granted by this document.

THE INFORMATION CONTAINED IN THIS DOCU-
MENT IS PROVIDED ON AN “AS IS” BASIS. IBM
makes no representations or warranties, either express
or implied, including but not limited to, warranties of
merchantability, fitness for a particular purpose, or
non-infringement, or that any practice or implementa-
tion of the IBM documentation will not infringe any third
party patents, copyrights, trade secrets, or other rights.
In no event will IBM be liable for damages arising
directly or indirectly from any use of the information
contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com®.

i Power ISA™

Version 3.0 B

The following paragraph does not apply to the United
Kingdom or any country or state where such provisions
are inconsistent with local law.

The specifications in this manual are subject to change
without notice. This manual is provided “AS 1IS”. Inter-
national Business Machines Corp. makes no warranty
of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability
and fitness for a particular purpose.

International Business Machines Corp. does not war-
rant that the contents of this publication or the accom-
panying source code examples, whether individually or
as one or more groups, will meet your requirements or
that the publication or the accompanying source code
examples are error-free.

This publication could include technical inaccuracies or
typographical errors. Changes are periodically made to
the information herein; these changes will be incorpo-
rated in new editions of the publication.

Address comments to IBM Corporation, 11400 Burnett
Road, Austin, Texas 78758-3493. IBM may use or dis-
tribute whatever information you supply in any way it
believes appropriate without incurring any obligation to
you.

The following terms are trademarks of the International
Business Machines Corporation in the United States
and/or other countries:

IBM®

Power ISA
PowerPC®

Power Architecture
PowerPC Architecture
Power Family
RISC/System 6000®
POWER®

POWER?2

POWER4

POWER4+

POWERS5

POWERS5+
POWER6®
POWER7®
POWERS®
POWER9™
System/370

System z

Notice to U.S. Government Users—Documentation
Related to Restricted Rights—Use, duplication or dis-
closure is subject to restrictions set fourth in GSA ADP
Schedule Contract with IBM Corporation.

Version 3.0 B

iv Power ISA™ |

Version 3.0 B

Preface

The roots of the Power ISA (Instruction Set Architec-
ture) extend back over a quarter of a century, to IBM
Research. The POWER (Performance Optimization
With Enhanced RISC) Architecture was introduced with
the RISC System/6000 product family in early 1990. In
1991, Apple, IBM, and Motorola began the collabora-
tion to evolve to the PowerPC Architecture, expanding
the architecture’s applicability. In 1997, Motorola and
IBM began another collaboration, focused on optimiz-
ing PowerPC for embedded systems, which produced
Book E.

In 2006, Freescale and IBM collaborated on the cre-
ation of the Power ISA Version 2.03, which represented
the reunification of the architecture by combining
Book E content with the more general purpose Pow-
erPC Version 2.02. The resulting architecture included
environment-specific privileged architecture optimiza-
tions (two Book llls) and optional application-specific
facilities (categories) as extensions to a pervasive base
architecture.

Power ISA Version 3.0 B focuses this integration by
choosing a single Book Il and a set of widely used cat-
egories to become part of the base architecture for all
forward-looking Power implementations. All other
optional architecture categories have been eliminated
to ensure increased application portability between
Power processors. Legacy embedded applications that
require the eliminated material will continue to use V.
2.07B.

The Power ISA Version 3.0 B consists of three books
and a set of appendices.

Book I, Power ISA User Instruction Set Architecture,
covers the base instruction set and related facilities
available to the application programmer.

Book Il, Power ISA Virtual Environment Architecture,
defines the storage model and other instructions and
facilities that enable the application programmer to cre-
ate multithreaded programs and programs that interact
with certain physical realities of the computing environ-
ment.

Book Ill, Power ISA Operating Environment Architec-
ture, defines the supervisor instructions and related
facilities.

As used in this document, the term “Power ISA” refers
to the instructions and facilities described in Books |, I,
and 1.

Change bars have been included in the body of this
document to indicate changes from the Power ISA Ver-
sion 2.07B. Change bars may be omitted for changes
associated with removing obsolete categories and the
second Book Il1.

Preface \Y

Version 3.0 B

Summary of Changes in Power ISA Version 3.0 B

This document is Version 3.0 B of the Power ISA. It is
intended to supersede and replace version 2.07B. Any
product descriptions that reference a version of the
architecture are understood to reference the latest ver-
sion. This version was created by making miscella-
neous corrections and by applying the following
requests for change (RFCs) to Power ISA Version
2.07B. Change bars in this summary of changes indi-
cate new, changed, or removed changes relative to V.
3.0.

Instruction Fusion: Specifies instruction sequences
that, when placed consecutively in the program, are
expected to provide improved performance.

Hashing Support Operations: Adds new Count Trailing
Zeros and Modulo instructions

Decimal Integer Support Operations: Adds new BCD
support instructions, including variable-length load/
store instructions for bcd values, new format conver-
sion instructions between BCD and National decimal,
zoned decimal, and 128-hit signed integer formats. new
BCDtruncate, round, and shift instructions, new BCD
sign digit manipulation instructions. Also adds multi-
ply-by-10 instructions to faciliate binary-to-decimal con-
version for printf. Corrected functionality of Decimal
Shift and Round (bcdsr.) instruction.

Decimal Floating-Point Support Operations: Add imme-
diate forms of DFP Test Significance instructions.

Binary Floating-Point Support Operations: Adds new
binary floating-point support instructions (e.g., expo-
nent and significand extraction and insertion) to
enhance implementation of math libraries.

Quad-Precision Binary Floating-Point Operations: Add
new instructions to support IEEE-754-2008 binary128
floating-point.

String Operations (EXU option): Adds instructions to
accelerate character testing functions.

String Operations (VSU option): Adds instructions to
accelerate string processing and targeted character
extraction.

Vector Half-Precision Floating-Point Support Opera-
tions: Adds support for IEEE-754-2008 binary16 float-
ing-point as a transport format.

128-bit SIMD Video Compression Operations: Adds
instructions to accelerate motion estimation.

128-bit SIMD FXU Operations: Adds remaining 32-bit
and 64-bit FXU functionality to vector instruction set.

128-bit SIMD Miscellaneous Operations: Enhances
support for Little-Endian processing with new load/
store instructions and new permute-class instructions,
new byte and halfword element load/store instructions,
and vector element insertion/extraction.

System Call Extension: Provides a new form of system
call that can direct execution to one of a number of
locations and that provides other enhancements.

PC-Relative Addressing: Specifies a new instruction
that adds an immediate value to the program counter
and writes it to the destination register in preparation
for use with a D-Form Load instructon.

Hypervisor _msgsnd Instruction Enhancements:
Extends the msgsnd instruction so that messages can

be sent throughout the system.

Performance Monitor Enhancements: Reserves a spe-
cial no-op instruction for use by the Performance Moni-
tor, and increases the scope of control of the
Performance Monitor bit of the Hypervisor Facility Sta-
tus and Control register.

Radix Tree and Related MMU Extensions: Adds sup-
port for the radix tree style of MMU with full virtualiza-
tion and related control mechanisms that manage its
coexistence with the HPT. Also adds a tlbie variant
that invalidates multiple consecutive translations.

Copy-Paste Facility: Adds support for a new facility that
enables an application to initiate accelerator opera-
tions.

Optimizing mtspr Sequences: Reserves an SPR to be
used in a no-op mtspr to indicate the beginning of a

sequence of mtsprs that can be done without synchro-
nizing each one independently.

Atomic Memory Operations: Adds support for a new
facility that performs simple atomic operations directly
in memory to avoid bringing the line through the cache
hierarchy when another core is likely to be the next
user.

Event-Based Branch Extension: Adds External
Event-Based Branch exception and status bits to the
BESCR.

Processor Compatibility Register: Adds a new V 2.07
bit to the PCR that controls the availability facilities in
problem state that are introduced in this level of the
architecture.

Atomicity and Alignment Enhancements: Limits the
number of disjoint atomic storage accesses that are
allowed for various non-atomic storage accesses.

Power-Saving Mode: Replaces the existing power-sav-
ing mode instructions with a single stop instruction,
and enables the operating system to enter a limited set
of power-saving levels without hypervisor involvement.

D-form VSX Floating-Point Storage Access Instruc-
tions: Adds base+displacement forms of VSR load and
store instructions.

Vi Power ISA™

Version 3.0 B

Integer Multiply-Add Instructions: Adds new integer
multiply-add instructions to accelerate arbitrary-length
multiplication.

msgsndp Hypervisor Facility Availability Interrupt:
Adds a new HFSCR bit to control the availability of the
msgsndp instruction and the associated control regis-
ters.

VSX Permute: Adds new pernute instructions that can
address all 64 VSRs.

Array Index Support: Enhance support for mixed-data-
type addressing into arrays (e.g., base + 32-bit index)

Hypervisor Virtualization Interrupt: Defines a new
exception and corresponding interrupt that is caused
by events external to the processor that relate to virtu-
alization.

wait Instruction Enhancements: Improves the capabili-
ties of the wait instruction so that resumption of pro-
cessing can occur due to event-based branches and
external signals.

Decrementer and Hypervisor Decrementer Enahnce-
ments: Defines a new mode bit in the LPCR that
enables additional Decrementer and Hypervisor Decre-
menter bits in order to increase the time between the
associated interrupts.

Deliver A Random Number: Adds a new instruction to
place a random number in a GPR in one of three for-
mats.

Data Storage Interrupt Status Register for Alignment
Interrupt: Simplifies the Alignment interrupt by remov-
ing the Data Storage Interrupt Status Register (DSISR)
from the set of registers modified by the Alignment
interrupt.

CA32 & OV32 and Move XER to CR Extended: Added
support for 32-bit CA & OV status in 64-bit mode for
dynamically-typed languages.

VSX Shift Variable: Accelerate parallel element
extraction from packed vectors of arbitrary-width-ele-
ment values.

Enhanced Virtualization for Linux: Delivers exceptions
caused by the OS attempting to use hypervisor instruc-
tions and SPRs to the hypervisor instead of the OS.

Accesses to unimplemented SPRs by the OS newly
cause interrupts that are also directed to the hypervisor.

Synchronizing Messages and Storage Updates: Adds a
new instruction to make latent storage updates from
another thread accessible after receiving a Directed
Hypervisor Doorbell interrupt from that thread.

VSX Conditional: Adds new instruction to
accelerate conditional, maximum, and minimum opera-
tions. Withdrew xscmpnedp, xvempnesp[.], and xvc-
mpnedp[.] instructions introduced in v3.0.

FXU & Vector Extensions for Blockchain Support: Two
new instructions (addex and vmsumudm) introduced to
accelerate arbitrary-precision integer arithmetic, and
specifically to accelerate Blockchain’s implementation
of elliptical curve encryption signature algorithm. The
QV bit is employed to provide an additional, indepen-
dent carry status bit, allowing software to parallelize
carry propagation.

Miscellaneous Changes: Makes minor clarifications,
corrections, and editorial enhancements.

EX/VSX/Vector Miscellaneous: Editorial cleanup of
Book | chapters 4, 5, and 7.

TM Multithread Overflow: Adds a bit to TEX-
ASR to enable software to differentiate single thread
footprint overflow from that aggravated by multiple
threads competing for footprint.

Lightweight mffs: Modifications of mffs to accelerate
saving/setting/restoring floating-point environments
(e.g., rounding modes, exception trapping enables)
common in math libraries that require overriding the
environment.

Preface Vil

Version 3.0 B

viii Power ISA™

Version 3.0 B

Table of Contents

Preface......................... v
Summary of Changes in Power ISA Ver-
sion3.0B, Vi
Tableof Contents iX
Book I:

Power ISA User Instruction Set

Architecture. 1
Chapter 1. Introduction.......... 3
1.1 OVerview.c.ouuvviun. 3
1.2 Instruction Mnemonics and Operands3
1.3 Document Conventions 3
1.3.1 Definitions 3
1.3.2 Notation..................... 4
1.3.3 Reserved Fields, Reserved Values,
and Reserved SPRs 5
1.3.4 Description of Instruction Operation 6
1.3.5 Phased-Out Facilities 8
1.4 ProcessorOverview............. 9
1.5 Computationmodes............ 10
1.6 Instruction Formats. 11
161 A-FORM 12
16.2 B-FORM 12
163 D-FORM 12
164 DQ-FORM.................. 12
165 DS-FORM 12
166 DX-FORM 12
167 I-FFORM 12
168 M-FORM 12
169 MD-FORM.................. 12
1.6.10 MDS-FORM................ 12
1611 SC-FORM 12
1.6.12 VA-FORM 12
16.13 VC-FORM 12
1.6.14 VX-FORM 13
16.15 X-FORM 13
1.6.16 XFL-FORM 15
1.6.17 XFX-FORM 15
1.6.18 XL-FORM 15

1.6.19 XO-FORM 15
1620 XS-FORM.................. 15
1.6.21 XX2-FORM................. 15
1.6.22 XX3-FORM................. 15
1.6.23 XX4-FORM................. 15
1.6.24 Z22-FORM................. 15
1.6.25 Z23-FORM................. 16
1.7 InstructionFields............... 16
1.8 Classes of Instructions 22
1.8.1 Defined Instruction Class. 22
1.8.2 lllegal InstructionClass 22
1.8.3 Reserved Instruction Class 22
1.9 Forms of Defined Instructions. 23
1.9.1 Preferred Instruction Forms.. 23
1.9.2 Invalid Instruction Forms 23
1.9.3 Reserved-no-op Instructions 23
1.10 Exceptions................... 23
1.11 Storage Addressing............ 24
1.11.1 Storage Operands 24
1.11.2 Instruction Fetches. 26

1.11.3 Effective Address Calculation. . . 27

Chapter 2. Branch Facility 29
2.1 Branch Facility Overview. 29
2.2 Instruction Execution Order. 29
2.3 Branch Facility Registers 30
2.3.1 Condition Register 30
2.3.2 LinkRegister 32
2.3.3 CountRegister............... 32
2.3.4 Target Address Register. 32
2.4 Branch Instructions 33
2.5 Condition Register Instructions. . .. 40
2.5.1 Condition Register Logical Instruc-

tions. 40

2.5.2 Condition Register Field Instruction .
41
2.6 System Call Instructions. 42

Chapter 3. Fixed-Point Facility. .. .45

3.1 Fixed-Point Facility Overview 45
3.2 Fixed-Point Facility Registers 45
3.2.1 General Purpose Registers 45
3.2.2 Fixed-Point Exception
Register......................... 45
3.2.3 VR Save Register. 46

3.3 Fixed-Point Facility Instructions . .. 47

Table of Contents iX

Version 3.0 B

3.3.1 Fixed-Point Storage Access Instruc-
tioNS .. .o 47
3.3.1.1 Storage Access Exceptions47
3.3.2 Fixed-Point Load Instructions47
3.3.2.1 64-bit Fixed-Point Load Instruc-
tiONS .. oo 52
3.3.3 Fixed-Point Store Instructions. . . .54
3.3.3.1 64-bit Fixed-Point Store Instruc-

tioNs 57
3.3.4 Fixed Point Load and Store Quad-
word Instructions 58
3.3.5 Fixed-Point Load and Store with Byte
Reversal Instructions 60
3.3.5.1 64-Bit Load and Store with Byte
Reversal Instructions 61
3.3.6 Fixed-Point Load and Store Multiple
Instructions. 62
3.3.7 Fixed-Point Move Assist Instructions
[PhasedOut]. 63

3.3.8 Other Fixed-Point Instructions. . . .66
3.3.9 Fixed-Point Arithmetic Instructions 67
3.3.9.1 64-bit Fixed-Point Arithmetic
Instructions. 79
3.3.10 Fixed-Point Compare Instructions. .
84
3.3.10.1 Character-Type Compare Instruc-
tions 87
3.3.11 Fixed-Point Trap Instructions. . . .89
3.3.11.1 64-bit Fixed-Point Trap Instruc-
tiONS .. oo 91
3.3.12 Fixed-PointSelect. 91
3.3.13 Fixed-Point Logical Instructions .92
3.3.13.1 64-bit Fixed-Point Logical Instruc-
tioNSs .. oo 99
3.3.14 Fixed-Point Rotate and Shift
Instructions. 101
3.3.14.1 Fixed-Point Rotate Instructions . .
101
3.3.14.1.1 64-bit Fixed-Point Rotate
Instructions. 104
3.3.14.2 Fixed-Point Shift Instructions .107
3.3.14.2.1 64-bit Fixed-Point Shift Instruc-

tions 109
3.3.15 Binary Coded Decimal (BCD)
Assist Instructions. 111
3.3.16 Move To/From Vector-Scalar Regis-
ter Instructions 112
3.3.17 Move To/From System Register
Instructions. 117

Chapter 4. Floating-Point Facility 123

4.1 Floating-Point Facility Overview. . .123
4.2 Floating-Point Facility Registers. . .124

4.2.1 Floating-Point Registers 124
4.2.2 Floating-Point Status and Control
Register 124

4.3 Floating-PointData. 127
43.1 DataFormat................ 127
4.3.2 Value Representation 127
4.3.3 SignofResult 129
4.3.4 Normalization and

Denormalization 129

4.3.5 Data Handling and Precision. .. 129
4.3.5.1 Single-Precision Operands. .. 129

4.3.5.2 Integer-Valued Operands 130
436 Rounding.................. 131
4.4 Floating-Point Exceptions. 132
4.4.1 Invalid Operation Exception. ... 134
4.4.1.1 Definition................. 134
4412 Action................... 134
4.4.2 Zero Divide Exception........ 134
4.4.2.1 Definition................. 134
4422 Action................... 135
4.4.3 Overflow Exception 135
4.4.3.1 Definition................. 135
4432 Action................... 135
4.4.4 Underflow Exception 136
4.4.4.1 Definition................. 136
4442 Action................... 136
4.45 Inexact Exception 136
4.45.1 Definition................. 136
4452 Action................... 136

4.5 Floating-Point Execution Models . 137
4.5.1 Execution Model for IEEE Opera-

tions 137
4.5.2 Execution Model for
Multiply-Add Type Instructions 139

4.6 Floating-Point Facility Instructions 140
4.6.1 Floating-Point Storage Access
Instructions 140
4.6.1.1 Storage Access Exceptions .. 140
4.6.2 Floating-Point Load Instructions 140
4.6.3 Floating-Point Store Instructions 144
4.6.4 Floating-Point Load and Store Dou-
ble Pair Instructions [Phased-Out] ... 148
4.6.5 Floating-Point Move Instructions 150
4.6.6 Floating-Point Arithmetic Instructions
152
4.6.6.1 Floating-Point Elementary Arithme-

tic Instructions., 152
4.6.6.2 Floating-Point Multiply-Add Instruc-
tions 157
4.6.7 Floating-Point Rounding and Con-
version Instructions. 159
4.6.7.1 Floating-Point Rounding Instruc-
tion 159
4.6.7.2 Floating-Point Convert To/From
Integer Instructions 159
4.6.7.3 Floating Round to Integer Instruc-
tions 165

4.6.8 Floating-Point Compare Instructions
167

Power ISA™

Version 3.0 B

4.6.9 Floating-Point Select Instruction 168
4.6.10 Floating-Point Status and Control
Register Instructions 170

Chapter 5. Decimal Floating-Point . .
175

5.1 Decimal Floating-Point (DFP) Facility
OVEeIVIEW. .. .o 175
5.2 DFP Register Handling. 176
5.2.1 DFP Usage of Floating-Point Regis-
ters ... 176
5.3 DFP Support for Non-DFP Data Types
178
5.4 DFP Number Representation. ... 179
5.4.1 DFP DataFormat............ 179
5.4.1.1 Fields Within the Data Format 179
5.4.1.2 Summary of DFP Data Formats . .
180

5.4.1.3 Preferred DPD Encoding 181
5.4.2 Classesof DFPData......... 181
5.5 DFP Execution Model. 182
55.1 Rounding.................. 182
5.5.2 Rounding Mode Specification .. 183
5.5.3 Formation of Final Result. 183
5.5.3.1 Use of Ideal Exponent 183
5.5.4 Arithmetic Operations 184
5.5.4.1 Sign of Arithmetic Result 184
5.5.5 Compare Operations......... 184
55.6 TestOperations............. 184
5.5.7 Quantum Adjustment Operations 184
5.5.8 Conversion Operations 185
5.5.8.1 Data-Format Conversion 185
5.5.8.2 Data-Type Conversion 185
5.5.9 Format Operations. 185
5.5.10 DFP Exceptions............ 185
5.5.10.1 Invalid Operation Exception . 187
5.5.10.2 Zero Divide Exception 188
5.5.10.3 Overflow Exception. 189
5.5.10.4 Underflow Exception. 189
5.5.10.5 Inexact Exception......... 190
5.5.11 Summary of Normal Rounding And
Range Actions. 191
5.6 DFP Instruction Descriptions 193
5.6.1 DFP Arithmetic Instructions 193
5.6.2 DFP Compare Instructions 197
5.6.3 DFP Test Instructions. 200
5.6.4 DFP Quantum Adjustment Instruc-
tions 203

5.6.5 DFP Conversion Instructions. .. 212
5.6.5.1 DFP Data-Format Conversion

Instructions 212
5.6.5.2 DFP Data-Type Conversion

Instructions 215
5.6.6 DFP Format Instructions 217
5.6.7 DFP Instruction Summary 221

Chapter 6. Vector Facility 223
6.1 Vector Facility Overview 223
6.2 Chapter Conventions 223

6.2.1 Description of Instruction Operation.
223

6.3 Vector Facility Registers 232

6.3.1 \Vector Registers............. 232

6.3.2 Vector Status and Control Register .
232

6.3.3 VR Save Register. 233

6.4 Vector Storage Access Operations 234

6.4.1 Accessing Unaligned Storage Oper-

ands. 236
6.5 Vector Integer Operations.. 237
6.5.1 Integer Saturation............ 237
6.6 Vector Floating-Point Operations . 239
6.6.1 Floating-Point Overview. 239
6.6.2 Floating-Point Exceptions 239
6.6.2.1 NaN Operand Exception. 239
6.6.2.2 Invalid Operation Exception .. 240
6.6.2.3 Zero Divide Exception. 240
6.6.2.4 Log of Zero Exception. 240
6.6.2.5 Overflow Exception......... 240
6.6.2.6 Underflow Exception........ 240

6.7 Vector Storage Access Instructions241
6.7.1 Storage Access Exceptions 241

6.7.2 Vector Load Instructions. 242
6.7.3 Vector Store Instructions 245
6.7.4 Vector Alignment Support Instruc-
ioONS. .. 247
6.8 Vector Permute and Formatting
Instructions 248

6.8.1 Vector Pack and Unpack Instructions
248

6.8.2 Vector Merge Instructions 255

6.8.3 Vector Splat Instructions 258

6.8.4 Vector Permute Instruction. 260

6.8.5 Vector Select Instruction 261

6.8.6 Vector Shift Instructions 262

6.8.7 Vector Extract Element Instructions .
267

6.8.8 Vector Insert Element Instructions . .
268

6.9 \Vector Integer Instructions 269

6.9.1 Vector Integer Arithmetic Instructions
269

6.9.1.1 Vector Integer Add Instructions 269

6.9.1.2 Vector Integer Subtract Instructions
275

6.9.1.3 Vector Integer Multiply Instructions
281

6.9.1.4 Vector Integer Multiply-Add/Sum

Instructions 285
6.9.1.5 Vector Integer Sum-Across Instruc-
tions. 290

Table of Contents Xi

Version 3.0 B

6.9.1.6 Vector Integer Negate Instructions.
293

6.9.2 Vector Extend Sign Instructions .294

6.9.2.1 Vector Integer Average Instructions
295

6.9.2.2 Vector Integer Absolute Difference

Instructions. 297
6.9.2.3 Vector Integer Maximum and Mini-
mum Instructions 299

6.9.3 Vector Integer Compare Instructions.
303

6.9.4 Vector Logical Instructions 312

6.9.5 Vector Parity Byte Instructions . .314

6.9.6 Vector Integer Rotate and Shift
Instructions. 315

6.10 Vector Floating-Point Instruction Set .
321

6.10.1 Vector Floating-Point Arithmetic

Instructions. 321
6.10.2 Vector Floating-Point Maximum and
Minimum Instructions 323
6.10.3 Vector Floating-Point Rounding and
Conversion Instructions 324
6.10.4 Vector Floating-Point Compare
Instructions. 328
6.10.5 Vector Floating-Point Estimate
Instructions. 331
6.11 Vector Exclusive-OR-based Instruc-
1110 3 1= PP 333
6.11.1 Vector AES Instructions. 333
6.11.2 Vector SHA-256 and SHA-512
Sigma Instructions 335
6.11.3 Vector Binary Polynomial Multiplica-
tion Instructions 336
6.11.4 Vector Permute and Exclusive-OR
Instruction. 338
6.12 Vector Gather Instruction. 339
6.13 Vector Count Leading Zeros Instruc-
tions 340
6.14 Vector Count Trailing Zeros Instruc-
toONS . ..o 341
6.14.1 Vector Count Leading/Trailing Zero
LSB Instructions. 342

6.14.2 Vector Extract Element Instructions
343

6.15 Vector Population Count Instructions.
345

6.16 Vector Bit Permute Instruction . . .346

6.17 Decimal Integer Instructions. 347
6.17.1 Decimal Integer Arithmetic Instruc-
tions 347
6.17.2 Decimal Integer Format Conversion
Instructions. 350
6.17.3 Decimal Integer Sign Manipulation
Instructions. 356

6.17.4 Decimal Integer Shift and Round
Instructions 357

6.17.5 Decimal Integer Truncate Instruc-
tions 360

6.18 Vector Status and Control Register
Instructions 362

Chapter 7. Vector-Scalar

Floating-Point Operations 363
7.1 Introduction.................. 363
7.1.1 Overview of the Vector-Scalar Exten-

SION . o 363

7.1.1.1 Compatibility with Floating-Point
and Decimal Floating-Point Operations 363
7.1.1.2 Compatibility with Vector Opera-

tions 363
7.2 VSXRegisters 364
7.2.1 Vector-Scalar Registers. 364
7.2.1.1 Floating-Point Registers.. 364
7.2.1.2 Vector Registers........... 366
7.2.2 Floating-Point Status and Control

Register. 367
7.3 VSXOperations 372
7.3.1 VSX Floating-Point Arithmetic Over-

VIBW. e 372
7.3.2 VSX Floating-Point Data 373
7.3.21 DataFormat.............. 373
7.3.2.2 Value Representation....... 375
7.3.2.3 SignofResult............. 376

7.3.2.4 Normalization and Denormalization
377
7.3.2.5 Data Handling and Precision . 377

7326 Rounding 381
7.3.3 VSX Floating-Point Execution Mod-
els. . 384
7.3.3.1 VSX Execution Model for IEEE
Operations 384
7.3.3.2 VSX Execution Model for Multi-
ply-Add Type Instructions 385

7.4 VSX Floating-Point Exceptions. .. 387
7.4.1 Floating-Point Invalid Operation

Exception 390
7.4.1.1 Definition................. 390
7.4.1.2 ActionforVE=1............ 390
7.4.1.3 ActionforVE=0............ 392

7.4.2 Floating-Point Zero Divide Exception
401

7.4.2.1 Definition................. 401
7.4.2.2 ActionforZE=1............ 401
7.4.2.3 ActionforZE=0............ 402

7.4.3 Floating-Point Overflow Exception .
404

7.4.3.1 Definition................. 404
7.4.3.2 ActionforOE=1 404
7.4.3.3 ActionforOE=0 407

Xii

Power ISA™

Version 3.0 B

7.4.4 Floating-Point Underflow Exception.
409

7.4.4.1 Definition................. 409
7.4.4.2 ActionforUE=1 409
7.4.4.3 ActionforUE=0 411
7.4.5 Floating-Point Inexact Exception 414
7.45.1 Definition................. 414
7.45.2 ActionforXE=1............ 414
7.45.3 Actionfor XE=0............ 417

7.5 VSX Storage Access Operations . 420
7.5.1 Accessing Aligned Storage Oper-

ands 420
7.5.2 Accessing Unaligned Storage Oper-

ands 421
7.5.3 Storage Access Exceptions. ... 422
7.6 VSXlnstructionSet 423

7.6.1 VSX Instruction Set Summary.. 423
7.6.1.1 VSX Storage Access Instructions.
423
7.6.1.2 VSX Binary Floating-Point Sign
Manipulation Instructions 425
7.6.1.3 VSX Binary Floating-Point Arithme-
tic Instructions. 425
7.6.1.4 VSX Binary Floating-Point Com-
pare Instructions 428
7.6.1.5 VSX Binary Floating-Point Round
to Shorter Precision Instructions. 429
7.6.1.6 VSX Binary Floating-Point Convert
to Shorter Precision Instructions. 429
7.6.1.7 VSX Binary Floating-Point Convert
to Longer Precision Instructions 429
7.6.1.8 VSX Binary Floating-Point Round
to Integral Instructions. 430
7.6.1.9 VSX Binary Floating-Point Convert
To Integer Instructions. 430
7.6.1.10 VSX Binary Floating-Point Con-
vert From Integer Instructions. 431
7.6.1.11 VSX Binary Floating-Point Math
Support Instructions 431
7.6.1.12 VSX Vector Logical Instructions .
432

A.3 Floating-Point Convert from Integer
Model. 782

A.4 Floating-Point Round to Integer Model
784

Appendix B. Densely Packed

Decimal...................... 787
B.1 BCD-to-DPD Translation........ 787
B.2 DPD-to-BCD Translation. 787
B.3 Preferred DPD encoding. 788

Appendix C. Assembler Extended

MnNnemonics 791
Cl Symbols.................... 791
C.2 Branch Mnemonics............ 792
C.21 BOandBIFields............ 792

C.2.2 Simple Branch Mnemonics 792

C.2.3 Branch Mnemonics Incorporating
Conditions 793

C.2.4 Branch Prediction 794

C.3 Condition Register Logical Mnemonics
795

C.4 Subtract Mnemonics. 795
C.4.1 Subtract Immediate 795
C.4.2 Subtract................... 795
C.5 Compare Mnemonics 796
C.5.1 Doubleword Comparisons. 796
C.5.2 Word Comparisons 796
C.6 Trap Mnemonics. 797
C.7 Integer Select Mnemonics 798
C.8 Rotate and Shift Mnemonics 799
C.8.1 Operations on Doublewords ... 799
C.8.2 Operations on Words. 800
C.9 Move To/From Special Purpose Regis-

ter Mnemonics. 801
C.10 Miscellaneous Mnemonics.. 802

Book II:

7.6.1.13 VSX Vector Permute-class Power ISA Virtual Environment

Instructions 432 Architecture 807
7.6.2 VSX Instruction Description Conven-
7%0231- K i s jgj Chapter 1. Storage Model. 809
PO nstruction perators 1.1 Definitions................... 809
7'(63552”'52 VSXInstruction RTL Function 435 1.2 Introduction.................. 810
""""" 1.3 Virtual Storage810
7.6.3 VSX Instruction Descriptions. . . 480 1.4 Single-Copy Atomicity 811
. 15 CacheModel................. 812
Appen_dlx A.) Suggested 1.6 Storage Control Attributes 812
Floating-Point Models 775 1.6.1 Write Through Required 813
A.1 Floating-Point Round to Single-Preci- 1.6.2 Caching Inhibited 813
sionModel. 775 1.6.3 Memory Coherence Required . 813
A.2 Floating-Point Convert to Integer 164 Guarded 813
Model 779 1.6.5 Strong AccessOrder 814

Table of Contents Xiil

Version 3.0 B

1.7 Shared Storage 814
1.7.1 Storage Access Ordering 815
1.7.2 Storage Ordering of Copy/Paste-Initi-

ated Data Transfers 817

1.7.3 Storage Ordering of I/O Accesses. . .
817

1.7.4 AtomicUpdate............... 817
1.7.4.1 Reservations 818
1.7.4.2 Forward Progress 820
1.8 Transactions.................. 821
1.8.1 Rollback-Only Transactions823
1.9 Instruction Storage............. 823
1.9.1 Concurrent Modification and Execu-
tion of Instructions 825

Chapter 2. Performance
Considerations and Instruction
Restart 827

2.1 Performance-Optimized Instruction
SeqUENCESo i i 827

2.1.1 Load and Store Operations. 828

2.1.2 32-Bit Constant Generation. 831

2.1.3 Sign and Zero Extension 831
2.1.4 Load/Store Addressing Relative to
Program Counter 832
2.1.5 Destructive Operation Operand
Preservation. 833
2.2 Instruction Restart 834

Chapter 3. Management of Shared

Resources 835
3.1 Program Priority Registers. 835
3.2 “or’Instruction 835

Chapter 4. Storage Control
Instructions 837

4.1 Parameters Useful to Application Pro-
gramsS . .. 837

4.2 Data Stream Control Register (DSCR)
837

4.3 Cache Management Instructions .839

4.3.1 Instruction Cache Instructions. . .840

4.3.2 Data Cache Instructions 841
4.3.2.1 Obsolete Data Cache Instructions .
852
4.3.3 “or’"Instruction............... 853
4.4 Copy-Paste Facility 854
4.5 Atomic Memory Operations 857
451 LoadAtomic 857
452 StoreAtomic................ 861
4.6 Synchronization Instructions 863

4.6.1 Instruction Synchronize Instruction. .
863

Chapter 7.
Facility 901

4.6.2 Load and Reserve and Store Condi-

tional Instructions 863
4.6.2.1 64-Bit Load and Reserve and Store

Conditional Instructions. 869
4.6.2.2 128-bit Load and Reserve Store

Conditional Instructions. 871
4.6.3 Memory Barrier Instructions ... 873
4.6.4 WaitInstruction 876

Chapter 5. Transactional Memory

Facility 877
5.1 Transactional Memory Facility Over-

VIEW. .o 877

5.1.1 Definitions 878

5.2 Transactional Memory Facility States.
880
5.2.1 The TDOOMEDBIt 882
5.3 Transaction Failure............ 882
5.3.1 Causes of Transaction Failure. . 882
5.3.2 Recording of Transaction Failure 885
5.3.3 Handling of Transaction Failure. 885
5.4 Transactional Memory Facility Regis-

ters ... 886
5.4.1 Transaction Failure Handler Address
Register (TFHAR) 886
5.4.2 Transaction EXception And Status
Register (TEXASR). 886
5.4.3 Transaction Failure Instruction
Address Register (TFIAR). 889
5.5 Transactional Facility Instructions. 890
Chapter 6. TimeBase 897
6.1 Time Base Instructions......... 898
Event-Based Branch

7.1 Event-Based Branch Overview. .. 901
7.2 Event-Based Branch Registers .. 902
7.2.1 Branch Event Status and Control

Register. 902
7.2.2 Event-Based Branch Handler Regis-
ter .. 903

7.2.3 Event-Based Branch Return Register
904
7.3 Event-Based Branch Instructions . 905

Chapter 8. Branch History Rolling
Buffer....................... 907

8.1 Branch History Rolling Buffer Entry
Format......................... 908

8.2 Branch History Rolling Buffer Instruc-
tions 909

Xiv

Power ISA™

Version 3.0 B

Appendix A. Assembler Extended

Mnemonics 911

A.1 Data Cache Block Touch [for Store]
Mnemonics 911

A.2 Data Cache Block Flush Mnemonics .
911

A3 OrMnemonics 911

A.4 Load and Reserve
Mnemonics 911

A.5 Synchronize Mnemonics 912

A.6 Wait Mnemonics. 912

A.7 Transactional Memory Instruction
Mnemics 912

A.8 Move To/From Time Base Mnemonics
912

A.9 Return From Event-Based Branch
Mnemonic...................... 912

Appendix B. Programming Examples

for Sharing Storage 913
B.1 Atomic Update Primitives. 913

B.2 Lock Acquisition and Release, and
Related Techniques. 915

B.2.1 Lock Acquisition and Import Barriers
915

1.2.1 Definitions and Notation. 923
1.2.2 ReservedFields............. 924
1.3 General Systems Overview. 925
1.4 Exceptions................... 925
1.5 Synchronization............... 925
1.5.1 Context Synchronization 925
1.5.2 Execution Synchronization. 926

Chapter 2. Logical Partitioning

(LPAR) and Thread Control. 927
21 Overview. 927
2.2 Logical Partitioning Control Register

(LPCR). ..ot 927
2.3 Hypervisor Real Mode Offset Register

(HRMOR). 931
2.4 Logical Partition

Identification Register (LPIDR) 931
2.5 Processor Compatibility Register

(PCR). . oo 932
2.6 Other Hypervisor Resources. 941
2.7 Sharing Hypervisor Resources . . . 941
2.8 Sub-Processors............... 942

2.9 Thread Identification Register (TIR) . .
942
2.10 Hypervisor Interrupt Little-Endian

B21.1 Acquire Lock and Import Shared (HILE)Bit. 942
Storage 915 -
B.2.1.2 Obtain Pointer and Import Shared Chapter 3. Branch Facility 943
StOrAGE « v v eee e 915 3.1 Branch Facility Overview. 943
B.2.2 Lock Release and Export Barriers. . 3.2 Branch Facility Registers 943
916 3.2.1 Machine State Register 943
B.2.2.1 Export Shared Storage and 3.2.2 State Transitions Associated with the
Release Lock oo 916 Transactional Memory Facility. 946
B.2.2.2 Export Shared Storage and 3.2.3 Processor Stop Status and Control
Release Lock using lwsync. 916 Register (PSSCR) 949
B.2.3 SafeFetch................. 916 3.3 Branch Facility Instructions. 952
B.3 ListInsertion................. 917 3.3.1 System Linkage Instructions . .. 952
B4 NOEScovveeeennn... 917 3.3.2 Power-Saving Mode. 957
B.5 Transactional Lock Elision 917 3.3.2.1 Power-Saving Mode Instruction . .
B.5.1 Enter Critical Section. 918 958
B.5.2 Handling Busy Lock 918 3.3.2.2 Entering and Exiting Power-Sav-
B.5.3 Handling TLE Abort. 918 ingMode 958
B.5.4 TLE Exit Section Critical Path . . 918 3.4 Event-Based Branch Facility and
B.55 Acquisition and Release of TLE Instruction 960
LoCKS. . . oo 918
Chapter 4. Fixed-Point Facility. . .961
Book lll: 4.1 Fixed-Point Facility Overview 961
4.2 Special Purpose Registers 961
. . 4.3 Fixed-Point Facility Registers 961
Powe_r ISA Operating Environment 4.3.1 Processor Version Register 961
Architecture.................. 921 4.3.2 Chip Information Register 961
4.3.3 Processor Identification Register 961
Chapter 1. Introduction........ 923 4.3.4 Process ldentification Register. . 962
1.1 OVervVIeW. 923 4.3.5 Thread ID Register. 962
1.2 Document Conventions 923 4.3.6 Control Register............. 962

Table of Contents XV

Version 3.0 B

4.3.7 Program Priority Register 963
4.3.8 Problem State Priority Boost Regis-
ter. 963
4.3.9 Relative Priority Register. 963
4.3.10 Software-use SPRs.......... 964

4.4 Fixed-Point Facility Instructions . . .965

4.4.1 Fixed-Point Load and Store Caching
Inhibited Instructions. 965

442 ORInstruction............... 968

4.4.3 Transactional Memory Instructions . .
969

4.4.4 Move To/From System Register

Instructions. 970
Chapter 5. Storage Control 981

51 Overviewc..... 981
5.2 Storage Exceptions 981
5.3 Instruction Fetch 981
5.3.1 ImplicitBranch............... 981
5.3.2 Address Wrapping Combined with

Changing MSRBitSF 981
54 DataAccess.................. 982
5.5 Performing Operations

Out-of-Order. 982
5.6 Invalid Real Address 982
5.7 Storage Addressing 983
5,71 32-BitMode................. 983
5.7.2 Virtualized Partition Memory (VPM)

Mode. 984
5.7.3 Hypervisor Real And Virtual Real

AddressingModes 984
5.7.3.1 Hypervisor Offset Real Mode

Address 984

5.7.3.2 Storage Control Attributes for
Accesses in Hypervisor Real Addressing

Mode. L 984
5.7.3.2.1 Hypervisor Real Mode Storage
Control 985
5.7.3.3 Virtual Real Mode Addressing
Mechanism...................... 985
5.7.3.4 Storage Control Attributes for
Implicit Storage Accesses. 986
5.7.4 Definitions. 986
5.7.5 Address Ranges Having Defined
USeS 987
5.7.5.1 Effective Address Space Structure
for Radix-using Partitions 987
576 In-MemoryTables............ 988
5.7.6.1 PartitionTable 989
5.7.6.2 ProcessTable.............. 991
5.7.7 Address Translation Overview . .991
5.7.8 Segment Translation.......... 994

5.7.8.1 Segment Lookaside Buffer (SLB) .
994
5782 SLBSearch............... 995

5.7.8.3 Segment Table Description and

Search. 995
5.7.8.3.1 Primary Hash for 256MB Seg-
mento .., 996

5.7.8.3.2 Primary Hash for 1TB Segment.
996
5.7.8.3.3 Secondary Hash for 256MB Seg-

ment 996
5.7.8.3.4 Secondary Hash for 1TB Seg-

ment 996
5.7.9 Hashed Page Table Translation. 996
5.7.9.1 Hashed Page Table 998
5.7.9.2 Page Table Search......... 999
5.7.10 Radix Tree Translation. 1001

5.7.10.1 Radix Tree Page Directory Entry
1002

5.7.10.2 Radix Tree Page Table Entry1003
5.7.10.3 Nested Translation 1003
5.7.11 Translation Process........ 1005
5.7.11.1 Fully-Qualified Address. ... 1005
5.7.11.2 Finding the Page Tables ... 1006
5.7.11.3 Obtaining Host Real Address,

RadixonRadix 1006
5.7.11.4 Obtaining Host Real Address,
HPT. ... 1007

5.7.12 Reference and Change Recording
1007

5.7.13 Storage Protection......... 1011

5.7.13.1 Virtual Page Class Key Protection
1011

5.7.13.2 Basic Storage Protection,

Address Translation Enabled 1015
5.7.13.3 Basic Storage Protection,
Address Translation Disabled. 1016
5.7.13.4 Radix Tree Translation Storage
Protection 1016
5.8 Storage Control Attributes 1017
5.8.1 Guarded Storage........... 1017
5.8.1.1 Out-of-Order Accesses to Guarded
Storage 1018
5.8.2 Storage Control Bits 1018

5.8.2.1 Storage Control Bit Restrictions . .
1019

5.8.2.2 Altering the Storage Control Bits .
1019

5.9 Storage Control Instructions. . .. 1021

5.9.1 Cache Management Instructions. . .
1021

5.9.2 Synchronize Instruction. 1021
5.9.3 Lookaside Buffer
Management. 1022
5.9.3.1 Thread-Specific Segment Transla-
tions 1023

5.9.3.2 SLB Management Instructions . .
1023

XVi

Power ISA™

Version 3.0 B

5.9.3.3 TLB Management Instructions . . .
1033

5.10 Translation Table Update Synchroni-
zation Requirements. 1043

5.10.1 Translation Table Updates. .. 1044

5.10.1.1 Adding a Page Table Entry. 1045

5.10.1.2 Modifying a Translation Table

Entry 1045
Chapter 6. Interrupts 1049
6.1 Overview................... 1049
6.2 |Interrupt Registers 1049
6.2.1 Machine Status Save/Restore Regis-
ters ... 1049

6.2.2 Hypervisor Machine Status Save/
Restore Registers. 1049

6.2.3 Access Segment Descriptor Register
1049

6.2.4 Data Address Register. 1050

6.2.5 Hypervisor Data Address Register. .
1050

6.2.6 Data Storage Interrupt

Status Register 1050
6.2.7 Hypervisor Data Storage Interrupt
Status Register 1050
6.2.8 Hypervisor Emulation Instruction
Register. 1050
6.2.9 Hypervisor Maintenance Exception
Register. 1051
6.2.10 Hypervisor Maintenance Exception
Enable Register 1051

6.2.11 Facility Status and Control Register
1051
6.2.12 Hypervisor Facility Status and Con-

trol Register. 1052
6.3 Interrupt Synchronization 1057
6.4 InterruptClasses 1057
6.4.1 Precise Interrupt 1057
6.4.2 Imprecise Interrupt. 1057
6.4.3 Interrupt Processing 1059
6.4.4 Implicit alteration of HSRRO and

HSRRL 1061
6.5 Interrupt Definitions 1063
6.5.1 System Reset Interrupt 1065
6.5.2 Machine Check Interrupt 1067
6.5.3 Data Storage Interrupt. 1069
6.5.4 Data Segment Interrupt 1071

6.5.5 Instruction Storage Interrupt .. 1071
6.5.6 Instruction Segment

Interrupt. L. 1072
6.5.7 External Interrupt........... 1073
6.5.7.1 Direct External Interrupt 1073
6.5.7.2 Mediated External Interrupt . 1073
6.5.8 Alignment Interrupt 1073
6.5.9 Program Interrupt 1074

6.5.10 Floating-Point Unavailable

Interrupt. 1076
6.5.11 Decrementer Interrupt 1076
6.5.12 Hypervisor Decrementer

Interrupt., 1077
6.5.13 Directed Privileged Doorbell Inter-

rupt .. 1077
6.5.14 System Call Interrupt 1077
6.5.15 Trace Interrupt 1077

6.5.16 Hypervisor Data Storage Interrupt .
1078
6.5.17 Hypervisor Instruction Storage

Interrupt. 1082
6.5.18 Hypervisor Emulation Assistance
Interrupt., 1083

6.5.19 Hypervisor Maintenance Interrupt .
1086
6.5.20 Directed Hypervisor Doorbell Inter-
rupt ... 1086
6.5.21 Hypervisor Virtualization Interrupt .
1087
6.5.22 Performance Monitor
Interrupt. L 1087
6.5.23 Vector Unavailable Interrupt. . 1087
6.5.24 VSX Unavailable Interrupt . .. 1087
6.5.25 Facility Unavailable Interrupt . 1088
6.5.26 Hypervisor Facility Unavailable
Interrupt. 1088
6.5.27 System Call Vectored Interrupt1088
6.6 Partially Executed

Instructions 1090
6.7 Exception Ordering........... 1091
6.7.1 Unordered Exceptions 1091
6.7.2 Ordered Exceptions 1091
6.8 Event-Based Branch Exception Order-

] o 1092
6.9 Interrupt Priorities 1092
6.10 Relationship of Event-Based

Branches to Interrupts. 1095
6.10.1 EBB Exception Priority. 1095
6.10.2 EBB Synchronization....... 1095
6.10.3 EBBClasses 1095

Chapter 7. Timer Facilities 1097
7.1 Overview. 1097
72 TimeBase(TB).............. 1097
7.2.1 Writing the Time Base 1098
7.3 Virtual TimeBase 1098
7.4 Decrementer................ 1099
7.4.1 Writing and Reading the Decre-

menter................ooounnnn 1100
7.5 Hypervisor Decrementer. 1100
7.6 Processor Utilization of Resources

Register (PURR) 1100
7.7 Scaled Processor Utilization of

Resources Register (SPURR). 1101

Table of Contents XVii

Version 3.0 B

7.8 Instruction Counter............ 1102

Chapter 8. Debug Facilities 1103
8.1 Overview 1103
8.2 Come-From Address Register . . . 1103
8.3 Completed Instruction Address Break-

point............... 1103

8.4 Data Address Watchpoint. 1104
Chapter 9. Performance Monitor

Facility 1107

9.1 Overview 1107

9.2 Performance Monitor Operation. . 1107

9.3 No-op Instructions Reserved for the
Performance Monitor 1108

9.4 Performance Monitor Facility Registers
1108

9.4.1 Performance Monitor SPR Numbers.
1108

9.4.2 Performance Monitor Counters. 1109

9.4.2.1 Event Counting and Sampling 1109

9.4.3 Threshold Event Counter 1110

9.4.4 Monitor Mode Control Register O . . .
1111

9.4.5 Monitor Mode Control Register 1 . ..
1116

9.4.6 Monitor Mode Control Register 2 . . .
1118

9.4.7 Monitor Mode Control Register A . ..
1119

9.4.8 Sampled Instruction Address Regis-
ter. 1122

9.4.9 Sampled Data Address Register. . . .
1122

9.4.10 Sampled Instruction Event Register
1123

9.5 Branch History Rolling Buffer. .. .1125

9.6 Interaction With Other Facilities . . 1125

Chapter 10. Processor Control . 1127
10.1 Overview 1127

10.2 Programming Model. 1127

10.3 Processor Control Registers . ..1127
10.3.1 Directed Privileged Doorbell Excep-
tonState 1127

10.4 Processor Control Instructions. .1129

Chapter 11. Synchronization
Requirements for Context Alterations
1133

Power ISA Book I-lll Appendices .1139
Appendix A. lllegal Instructions .1141

Appendix B. Reserved Instructions.
1143

Appendix C. Opcode Maps..... 1145

Appendix D. Power ISA Instruction
Set Sorted by Opcode 1179

Appendix E. Power ISA Instruction
Set Sorted by Version 1199

Appendix F. Power ISA Instruction
Set Sorted by Mnemonic 1219

Last Page - End of Document ... 1239

XViii Power ISA™

Version 3.0 B

Book I:

Power ISA User Instruction Set Architecture

Book I: Power ISA User Instruction Set Architecture

1

Version 3.0 B

2 Power ISA™ |

Version 3.0 B

Chapter 1. Introduction

1.1 Overview

This chapter describes computation modes,document
conventions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Instruction Mnemonics and
Operands

The description of each instruction includes the mne-
monic and a formatted list of operands. Some exam-
ples are the following.

stw RS,D(RA)
addis RT,RA,SI

Power ISA-compliant Assemblers will support the mne-
monics and operand lists exactly as shown. They
should also provide certain extended mnemonics, such
as the ones described in Appendix C of Book I.

1.3 Document Conventions

1.3.1 Definitions

The following definitions are used throughout this docu-
ment.

® program
A sequence of related instructions.

W application program
A program that uses only the instructions and
resources described in Books | and II.

® processor
The hardware component that implements the
instruction set, storage model, and other facilities
defined in the Power ISA architecture, and exe-
cutes the instructions specified in a program.

® quadword, doubleword, word, halfword, and
byte
128 bits, 64 bits, 32 bits, 16 bits, and 8 bits,
respectively.

positive
Means greater than zero.

negative
Means less than zero.

floating-point single format (or simply single
format)

Refers to the representation of a single-precision
binary floating-point value in a register or storage.

floating-point double format (or simply double
format)

Refers to the representation of a double-precision
binary floating-point value in a register or storage.

system library program

A component of the system software that can be
called by an application program using a Branch
instruction.

system service program

A component of the system software that can be
called by an application program using a System
Call or System Call Vectored instruction.

system trap handler

A component of the system software that receives
control when the conditions specified in a Trap
instruction are satisfied.

system error handler

A component of the system software that receives
control when an error occurs. The system error
handler includes a component for each of the vari-
ous kinds of error. These error-specific compo-
nents are referred to as the system alignment error
handler, the system data storage error handler,
etc.

latency

Refers to the interval from the time an instruction
begins execution until it produces a result that is
available for use by a subsequent instruction.

unavailable

Refers to a resource that cannot be used by the
program. For example, storage is unavailable if
access to it is denied. See Book lII.

Chapter 1. Introduction 3

Version 3.0 B

B undefined value

May vary between implementations, and between
different executions on the same implementation,
and similarly for register contents, storage con-
tents, etc., that are specified as being undefined.

boundedly undefined

The results of executing a given instruction are
said to be boundedly undefined if they could have
been achieved by executing an arbitrary finite
sequence of instructions (none of which yields
boundedly undefined results) in the state the pro-
cessor was in before executing the given instruc-
tion. Boundedly undefined results may include the
presentation of inconsistent state to the system
error handler as described in Section 1.9.1 of Book
1. Boundedly undefined results for a given instruc-
tion may vary between implementations, and
between different executions on the same imple-
mentation.

“must”
If software violates a rule that is stated using the
word “must” (e.g., “this field must be set to 07), the
results are boundedly undefined unless otherwise
stated.

sequential execution model

The model of program execution described in
Section 2.2, “Instruction Execution Order” on
page 29.

1.3.2 Notation

The following notation is used throughout the Power
ISA documents.

All numbers are decimal unless specified in some
special way.

- Obnnnn means a number expressed in binary
format.

- 0xnnnn means a number expressed in hexa-
decimal format.

Underscores may be used between digits.
RT, RA, R1, ... refer to General Purpose Registers.

FRT, FRA, FR1, ... refer to Floating-Point Regis-
ters.

FRTp, FRAp, FRBp, ... refer to an even-odd pair of
Floating-Point Registers. Values must be even,
otherwise the instruction form is invalid.

B VRT, VRA, VR1, ... refer to Vector Registers.

(x) means the contents of register x, where x is the
name of an instruction field. For example, (RA)
means the contents of register RA, and (FRA)
means the contents of register FRA, where RA and
FRA are instruction fields. Names such as LR and
CTR denote registers, not fields, so parentheses

are not used with them. Parentheses are also
omitted when register x is the register into which
the result of an operation is placed.

(RA|0) means the contents of register RA if the RA
field has the value 1-31, or the value O if the RA
field is 0.

Bytes in instructions, fields, and bit strings are
numbered from left to right, starting with byte 0
(most significant).

Bits in registers, instructions, fields, and bit strings
are specified as follows. In the last three items
(definition of X, etc.), if X is a field that specifies a
GPR, FPR, or VR (e.g., the RS field of an instruc-
tion), the definitions apply to the register, not to the
field.

- Bits in instructions, fields, and bit strings are
numbered from left to right, starting with bit O

- For all registers except the Vector registers,
bits in registers that are less than 64 bits start
with bit number 64-L, where L is the register
length; for the Vector registers, bits in regis-
ters that are less than 128 bits start with bit
number 128-L.

- The leftmost bit of a sequence of bits is the
most significant bit of the sequence.

- X, means bit p of register/instruction/field/
bit_string X.

- Xp;qg means bits p through g of register/instruc-
tion/field/bit_string X.

- Xy q.. means bits p, g, ... of register/instruc-
tion/field/bit_string X.

—1(RA) means the one’s complement of the con-
tents of register RA.

A period (.) as the last character of an instruction
mnemonic means that the instruction records sta-
tus information in certain fields of the Condition
Register as a side effect of execution.

The symbol || is used to describe the concatena-
tion of two values. For example, 010 || 111 is the
same as 010111.

x" means x raised to the nt" power.

"x means the replication of x, n times (i.e., x con-
catenated to itself n-1 times). "0 and "1 are spe-
cial cases:

- "0 means a field of n bits with each bit equal to
0. Thus %0 is equivalent to 0b0000O0.

- " means a field of n bits with each bit equal to
1. Thus 1 is equivalent to Ob11111.

Each bit and field in instructions, and in status and
control registers (e.g., XER, FPSCR) and Special
Purpose Registers, is either defined or reserved.
Some defined fields contain reserved values. In
such cases when this document refers to the spe-
cific field, it refers only to the defined values,
unless otherwise specified.

Power ISA™ |

Version 3.0 B

|/ /I, /ll, ... denotes a reserved field, in a register,
instruction, field, or bit string.

m ?, ?7?, 7?72, ... denotes an implementation-depen-
dent field in a register, instruction, field or bit string.

1.3.3 Reserved Fields, Reserved
Values, and Reserved SPRs

Reserved fields in instructions are ignored by the pro-
cessor.

In some cases a defined field of an instruction has cer-
tain values that are reserved. This includes cases in
which the field is shown in the instruction layout as con-
taining a particular value; in such cases all other values
of the field are reserved. In general, if an instruction is
coded such that a defined field contains a reserved
value the instruction form is invalid; see Section 1.9.2
on page 23. The only exception to the preceding rule is
that it does not apply to Reserved and lllegal classes of
instructions (see Section 1.8) or to portions of defined
fields that are specified, in the instruction description,
as being treated as reserved fields.

To maximize compatibility with future architecture
extensions, software must ensure that reserved fields
in instructions contain zero and that defined fields of
instructions do not contain reserved values.

The handling of reserved bits in System Registers (e.g.,
XER, FPSCR) depends on whether the processor is in
problem state. Unless otherwise stated, software is per-
mitted to write any value to such a bit. In problem state,
a subsequent reading of the bit returns 0 regardless of
the value written; in privileged states, a subsequent
reading of the bit returns 0 if the value last written to the
bit was 0 and returns an undefined value (0 or 1) other-
wise.

In some cases, a defined field of a System Register
has certain values that are reserved. Software must not
set a defined field of a System Register to a reserved
value. References elsewhere in this document to a
defined field (in an instruction or System Register) that
has reserved values assume the field does not contain
a reserved value, unless otherwise stated or obvious
from context.

In some cases, a given bit of a System Register is
specified to be set to a constant value by a given
instruction or event. Unless otherwise stated or obvious
from context, software should not depend on this con-
stant value because the bit may be assigned a mean-
ing in a future version of the architecture.

The reserved SPRs include SPRs 808, 809, 810, and
811. mtspr and mfspr instructions specifying these
SPRs are treated as no-ops. Reserved SPRs are pro-
vided in the architecture to anticipate the eventual
adoption of performance hint functionality that must be
controlled by SPRs. Control of these capabilities using
reserved SPRs will allow software to use these new
capabilities on new implementations that support them
while remaining compatible with existing implementa-
tions that may not support the new functionality.

Chapter 1. Introduction 5

Version 3.0 B

Reserved SPRs are not assigned names. There are no
individual descriptions of reserved SPRs in this docu-
ment.

—— Assembler Note

Assemblers should report uses of reserved values
of defined fields of instructions as errors.

— Programming Note

It is the responsibility of software to preserve bits
that are now reserved in System Registers,
because they may be assigned a meaning in some
future version of the architecture.

In order to accomplish this preservation in imple-
mentation-independent fashion, software should do
the following.

W Initialize each such register supplying zeros for
all reserved bits.

B Alter (defined) bit(s) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the reg-
ister.

The XER and FPSCR are partial exceptions to this
recommendation. Software can alter the status bits
in these registers, preserving the reserved bits, by
executing instructions that have the side effect of
altering the status bits. Similarly, software can alter
any defined bit in the FPSCR by executing a Float-
ing-Point Status and Control Register instruction.
Using such instructions is likely to yield better per-
formance than using the method described in the
second item above.

1.3.4 Description of Instruction
Operation

Instruction descriptions (including related material such
as the introduction to the section describing the instruc-
tions) mention that the instruction may cause a system
error handler to be invoked, under certain conditions, if
and only if the system error handler may treat the case
as a programming error. (An instruction may cause a
system error handler to be invoked under other condi-
tions as well; see Chapter 6 of Book IlI).

A formal description is given of the operation of each
instruction. In addition, the operation of most instruc-
tions is described by a semiformal language at the reg-
ister transfer level (RTL). This RTL uses the notation
given below, in addition to the notation described in
Section 1.3.2. Some of this notation is also used in the
formal descriptions of instructions. RTL notation not
summarized here should be self-explanatory.

The RTL descriptions cover the normal execution of the
instruction, except that “standard” setting of status reg-
isters, such as the Condition Register, is not shown.

(“Non-standard” setting of these registers, such as the
setting of the Condition Register by the Compare
instructions, is shown.) The RTL descriptions do not
cover cases in which the system error handler is
invoked, or for which the results are boundedly unde-
fined.

The RTL descriptions specify the architectural transfor-
mation performed by the execution of an instruction.
They do not imply any particular implementation.

Notation Meaning

« Assignment

“iea Assignment of an instruction effective
address. In 32-bit mode the high-order 32
bits of the 64-bit target address are set to
0.

- NOT logical operator

+ Two’s complement addition

- Two's complement subtraction, unary
minus

x Multiplication

Xgi Signed-integer multiplication

X Unsigned-integer multiplication

/ Division

+ Division, with result truncated to integer

% Remainder of integer division

N Square root

= # Equals, Not Equals relations

<, g, 2 Signed comparison relations

<u U Unsigned comparison relations

? Unordered comparison relation

&, | AND, OR logical operators

®, = Exclusive OR, Equivalence logical opera-
tors ((a=b) = (a®-b))

ABS(x) Absolute value of x

BCD_TO_DPD(x)
The low-order 24 bits of x contain six, 4-bit
BCD fields which are converted to two
declets; each set of two declets is placed
into the low-order 20 bits of the result. See
Section B.1, “BCD-to-DPD Translation”.

CEIL(x) Least integer > x

DOUBLE(x) Result of converting x from floating-point
single format to floating-point double for-
mat, using the model shown on page 140

DPD_TO_BCD(x)

The low-order 20 bits of x contain two

declets which are converted to six, 4-bit

BCD fields; each set of six, 4-bit BCD

fields is placed into the low-order 24 bits of

the result. See Section B.2, “DPD-to-BCD

Translation”.

Result of extending x on the left with sign

bits

FLOOR(x) Greatestinteger <x

GPR(x) General Purpose Register x

MASK(x, y) Mask having 1s in positions x through y
(wrapping if x > y) and 0s elsewhere

EXTS(X)

6 Power ISA™ |

Version 3.0 B

MEM(X, y)

Contents of a sequence of y bytes of stor-
age. The sequence depends on the byte
ordering used for storage access, as fol-
lows.

Big-Endian byte ordering:

The sequence starts with the byte at
address x and ends with the byte at
address x+y-1.

Little-Endian byte ordering:

The sequence starts with the byte at
address x+y-1 and ends with the byte at
address x.

ROTLg4(x, y)

Result of rotating the 64-bit value x left y
positions

ROTL32(X, y)

SINGLE(x)

SPR(X)
TRAP

Result of rotating the 64-bit value x||x left y
positions, where x is 32 bits long

Result of converting x from floating-point
double format to floating-point single for-
mat, using the model shown on page 144
Special Purpose Register x

Invoke the system trap handler

characterization

undefined
CIA

NIA

Reference to the setting of status bits, in a
standard way that is explained in the text
An undefined value.

Current Instruction Address, which is the
64-bit address of the instruction being
described by a sequence of RTL. Used by
relative branches to set the Next Instruc-
tion Address (NIA), and by Branch instruc-
tions with LK=1 to set the Link Register.
Does not correspond to any architected
register. The CIA is sometimes referred to
as the Program Counter (PC).

Next Instruction Address, which is the
64-bit address of the next instruction to be
executed. For a successful branch, the
next instruction address is the branch tar-
get address: in RTL, this is indicated by
assigning a value to NIA. For other instruc-
tions that cause non-sequential instruction
fetching (see Book lll), the RTL is similar.
For instructions that do not branch, and do
not otherwise cause instruction fetching to
be non-sequential, the next instruction
address is CIA+4. Does not correspond to
any architected register.

if... then... else...

do

leave

Conditional execution, indenting shows
range; else is optional.

Do loop, indenting shows range. “To” and/
or “by” clauses specify incrementing an
iteration variable, and a “while” clause
gives termination conditions.

Leave innermost do loop, or do loop
described in leave statement.

For loop, indenting shows range. Clause
after “for” specifies the entities for which to
execute the body of the loop.

switch/case/default

switch/case/default statement, indenting
shows range. The clause after “switch”
specifies the expression to evaluate. The
clause after “case” specifies individual val-
ues for the expression, followed by a
colon, followed by the actions that are
taken if the evaluated expression has any
of the specified values. “default” is
optional. If present, it must follow all the
“case” clauses. The clause after “default”
starts with a colon, and specifies the
actions that are taken if the evaluated
expression does not have any of the val-
ues specified in the preceding case state-
ments.

Chapter 1. Introduction 7

Version 3.0 B

The precedence rules for RTL operators are summa-
rized in Table 1. Operators higher in the table are
applied before those lower in the table. Operators at
the same level in the table associate from left to right,
from right to left, or not at all, as shown. (For example,
- associates from left to right, so a-b-c = (a-b)-c.)
Parentheses are used to override the evaluation order
implied by the table or to increase clarity; parenthe-
sized expressions are evaluated before serving as

operands.

Table 1: Operator precedence

1.3.5 Phased-Out Facilities

Phased-Out Facilities

These are facilities and instructions that, in some
future version of the architecture, will be dropped
out of the architecture. System developers should
develop a migration plan to eliminate use of them
in new systems. These facilities are marked with a
[Phased-Out] marker.

Phased-Out facilities and instructions must be
implemented.

Programming Note

Warning: Instructions and facilities being phased
out of the architecture are likely to perform poorly
on future implementations. New programs should
not use them.

Operators Associativity
subscript, function evaluation left to right
pre-superscript (replication), right to left
post-superscript (exponentiation)

unary -, = right to left
X, + left to right
+, -, left to right
Il left to right
= # <, < > > <M SU 2 left to right
& @, = left to right
| left to right
: (range) none
& none

' lea

8 Power ISA™ |

Version 3.0 B

1.4 Processor Overview

The basic classes of instructions are as follows:

B branch instructions (Chapter 2)

B GPR-based scalar fixed-point instructions (Chap-
ter 3)

B FPR-based scalar floating-point instructions
(Chapter 4)

B FPR-based scalar decimal floating-point instruc-
tions (Chapter 5)

B VR-based vector fixed-point and floating-point
instructions (Chapter 6)

B VSR-based scalar and vector floating-point
instructions (Chapter 7)

Scalar fixed-point instructions operate on byte, half-
word, word, doubleword, and quadword operands,
where each operand contained in a GPR. Vector
fixed-point instructions operate on vectors of byte, half-
word, and word operands, where each vector is con-
tained in a VR. Scalar floating-point instructions
operate on single-precision or double-precision float-
ing-point operands, where each operand is contained
in an FPR or VSR. Vector floating-point instructions
operate on vectors of single-precision and double-pre-
cision floating-point operands, where each vector is
contained in a VR or VSR.

The Power ISA uses instructions that are four bytes
long and word-aligned. It provides for byte, halfword,
word, doubleword, and quadword operand loads and
stores between storage and a set of 32 General Pur-
pose Registers (GPRs). It provides for word and dou-
bleword operand loads and stores between storage
and a set of 32 Floating-Point Registers (FPRs). It also
provides for byte, halfword, word, and quadword oper-
and loads and stores between storage and a set of 32
Vector Registers (VRSs). It provides for doubleword and
quadword operand loads and stores between storage
and a set of 64 Vector-Scalar Registers (VSRS).

Signed integers are represented in two’s complement
form.

There are no computational instructions that modify
storage; instructions that reference storage may refor-
mat the data (e.g. load halfword algebraic). To use a
storage operand in a computation and then modify the
same or another storage location, the contents of the
storage operand must be loaded into a register, modi-
fied, and then stored back to the target location.
Figure 1 is a logical representation of instruction pro-
cessing. Figure 2 shows the registers that are defined
in Book I. (A few additional registers that are available
to application programs are defined in other Books, and
are not shown in the figure.)

branch
p| instruction
processing
instructions ¢
4 N
4 h 4 h 4
GPR-based FPR-based || VR-based | VSR-based
instruction instruction || instruction | instruction
processing processing || processing | processing
scalar scalar vector scalar
fixed-point floating-point fixed-point floating-point
floating-point | vector
permute floating-point
scalar permute
integer (16B)
BCD
crypto
4 4)
4
data
A
h 4
instructions
storage

Figure 1. Logical processing model

Chapter 1. Introduction 9

Version 3.0 B

CR |
32 63
“Condition Register” on page 30
| LR |
0 63
“Link Register” on page 32
\ CTR |
0 63
“Count Register” on page 32
GPRO
GPR 1
GPR 30
GPR 31
0 63

“General Purpose Registers” on page 45

XER |

0 63
“Fixed-Point Exception Register” on page 45

VRSAVE |

32 63
“VR Save Register” on page 233

FPRO

FPR 1

FPR 30

FPR 31

0 63
“Floating-Point Registers” on page 124

| FPSCR
32 63
“Floating-Point Status and Control Register” on
page 124
VR 0
VR 1
VR 30
VR 31
0 127

“Vector Registers” on page 232

VSCR
96 127
“Vector Status and Control Register” on page 232

VSR 0
VSR 1

VSR 62
VSR 63
0 127

“Vector-Scalar Registers” on page 364

Figure 2. Registers that are defined in Book |

1.5 Computation modes

Processors provide two execution modes, 64-bit mode
and 32-bit mode. In both of these modes, instructions
that set a 64-bit register affect all 64 bits. The computa-
tional mode controls how the effective address is inter-
preted, how Condition Register bits and XER bits are
set, how the Link Register is set by Branch instructions

in which LK=1, and how the Count Register is tested by
Branch Conditional instructions. Nearly all instructions
are available in both modes (the only exceptions are a
few instructions that are defined in Book Ill). In both
modes, effective address computations use all 64 bits
of the relevant registers (General Purpose Registers,

10 Power ISA™ |

Version 3.0 B

Link Register, Count Register, etc.) and produce a
64-bit result. However, in 32-bit mode the high-order 32
bits of the computed effective address are ignored for
the purpose of addressing storage; see Section 1.11.3
for additional details.

—— Programming Note

Although instructions that set a 64-bit register affect
all 64 bits in both 32-bit and 64-bit modes, operat-
ing systems often do not preserve the upper 32-bits
of all registers across context switches done in
32-bit mode. For this reason, application programs
operating in 32-bit mode should not assume that
the upper 32 bits of the GPRs are preserved from
instruction to instruction unless the operating sys-
tem is known to preserve these bits.

1.6 Instruction Formats

All instructions are four bytes long and word-aligned.
Thus, whenever instruction addresses are presented to
the processor (as in Branch instructions) the low-order
two bits are ignored. Similarly, whenever the processor
develops an instruction address the low-order two bits
are zero.

Bits 0:5 always specify the primary opcode (PO,
below). Many instructions also have an extended
opcode (XO, below). The remaining bits of the instruc-
tion contain one or more fields as shown below for the
different instruction formats.

The format diagrams given below show horizontally all
valid combinations of instruction fields. The diagrams
include instruction fields that are used only by instruc-
tions defined in Book Il or in Book Il1.

Split Field Notation

In some cases an instruction field occupies more than
one contiguous sequence of bits, or occupies one con-
tiguous sequence of bits that are used in permuted
order. Such a field is called a split field. In the format
diagrams given below and in the individual instruction
layouts, the name of a split field is shown in small let-
ters, once for each of the contiguous sequences. In the
RTL description of an instruction having a split field,
and in certain other places where individual bits of a
split field are identified, the name of the field in small
letters represents the concatenation of the sequences
from left to right. In all other places, the name of the
field is capitalized and represents the concatenation of
the sequences in some order, which need not be left to
right, as described for each affected instruction.

Chapter 1. Introduction

11

Version 3.0 B

1.6.1 A-FORM | 1.6.6 DX-FORM
0 6 11 16 21 26 31 0 6 11 16 26 31
PO FRT | FRB | /Il xo k| 1| Po | RT | a1 | do | xo g
PO FRT | FRA n FRC | XO R | Figure8. DXinstruction format
PO FRT FRA FRB 1/ XO |k
PO FRT | FRA | FRB | FRC | XO |k 1.6.7 |-FORM
PO RT RA RB BC XOo |/ 0 6 3031
Figure 3. Ainstruction format | PO | L |AA‘LK|
Figure 9. linstruction format
1.6.2 B-FORM
0 6 1 16 3031 1.6.8 M-FORM
‘ PO ‘ BO | BI ‘ BD ‘AA|LK‘ 0 6 1 16 21 26 31
Figure 4. B instruction format PO RS RA RB MB ME [
PO RS RA SH MB ME |Re
1.6.3 D-FORM Figure 10. M instruction format
0 6 11 16 31
po_ [&F] Ra si 1.6.9 MD-FORM
PO BF |/|L| RA Ul 0 6 1 16 21 27 3031
PO FRS RA D PO RS RA sh mb XO |sh|Re
PO FRT RA D PO RS RA sh me XO |sh|Re
PO RS RA Figure 11. MD instruction format
PO RS RA Ul
PO RT | RA D 1.6.10 MDS-FORM
PO RT RA Sl 0 6 1 16 21 25 27 31
PO TO RA Sl PO RS RA RB mb XO |Re
Figure 5. D instruction format PO RS RA RB me XO ke
Figure 12. MDS instruction format
1.6.4 DQ-FORM
0 6 1 16 2829 31 1.6.11 SC-FORM
PO RTp RA DQ PT 0 6 1 16 20 27 3031
PO s RA DQ 5| X0 | po [m | wm | m | ev [
PO T RA bR 1| X0 Figure 13. SC instruction format
Figure 6. DQ instruction format
1.6.12 VA-FORM
1.6.5 DS-FORM 0 6 11 16 2122 26 31
0 6 1 16 3031 PO RT RA RB RC X0
PO FRSp RA DS X0 PO VRT VRA VRB |[/| SHB X0
PO FRTp RA DS XO PO VRT VRA VRB VRC XO
PO RS RA DS X0 Figure 14. VA instruction format
PO RSp RA DS XO
PO | RT | ra DS x0 1.6.13 VC-FORM
PO VRS RA DS X0 0 6 1 16 2122 31
PO VRT | RA DS X0 | Ppo | vRT | VRA | VRB [§ X0
Figure 7. DS instruction format Figure 15. VC instruction format

12 Power ISA™ |

Version 3.0 B

1.6.14 VX-FORM

0

6

11121314 16

212223

31

PO I 1 VRB X0
PO RT EO | VRB X0
PO VRT 1 i X0
PO VRT 1 VRB X0
PO VRT | i || VvRe X0
PO VRT |/ |um| VRB X0
PO VRT [/[um | vRre X0
PO VRT | EO | VRB [1]/ X0
PO VRT | EO | VRB [1]s X0
PO VRT | EO | VRB X0
PO VRT | RA | VRB X0
PO VRT | sim I X0
PO VRT | uM | VRB X0
PO VRT | VRA i X0
PO VRT | VRA | VRB [1]/ X0
PO VRT | VRA | VRB [1]s X0
PO VRT | VRA | VRB X0
Figure 16. VX instruction format
1.6.15 X-FORM
0 6 7 8 910111213141516171819202122232425262728293031
PO il 1 I X0 /
PO I i I X0 1
PO i 1 RB X0 /
PO I RA I X0 /
PO I RA I X0 1
PO i RA RB X0 /
PO oL m I X0 /
PO mo L m RB X0 /
PO m 1l ra RB X0 /
PO m L Rra RB X0 Re
po | m L] wm I X0 /
Ppo | m |L| RA RB X0 /
po | u |w| I X0 /
PO [n|mH | m I X0 /
po |/| cTt | RA RB X0 /
po |al m 1 I X0 /
PO |al m R I X0 /
PO | BF|u| i X0 /
PO | BF|u| FRB X0 /
Po | BF[u| m i u |/ X0 Re
PO | BF [/ [BFA[]| m X0 /
PO | BF|/| FRA | FRB X0 /

Figure 17. Xinstruction format

6 7 8 910111213141516171819202122232425262728293031

Po |[BF|/| FRA | FRBp X0 /
PO | BF |/ | FRAp | FRBp X0 /
PO |BF|/| RA RB X0 /
PO |BF|/| um | FRrB X0 /
PO |BF|/| umM | FRep X0 /
PO |BF|/| VRA | VRB X0 /
po | BF |/f1] RA RB X0 /
po | BF /L] Ra RB X0 /
PO |BF| DCMX | VRB X0 /
PO BT 1 I X0 Re
PO FRS | RA RB X0 /
PO FRSp | RA RB X0 /
PO FRT 1 I X0 Re
PO FRT I FRB X0 Re
PO FRT | FRep X0 Re
PO FRT | EO I X0 Re
PO FRT | EO I X0 /
PO FRT | EO [m [mi X0 /
PO FRT | EO || i X0 /
PO FRT | EO | FRB X0 /
PO FRT | FRA | FRB X0 /
PO FRT | FRA | FRB X0 Re
PO FRT | RA RB X0 /
PO FRT s| i | FRB X0 Re
PO FRT [sP| m | FRB X0 Re
PO FRTp | /Il FRB X0 Re
PO FRTp | /I | FRBp X0 Re
PO FRTp | FRA | FRBp X0 Re
PO FRTp | FRAp | FRBp X0 Re
PO FRTp | RA RB X0 /
PO FRTp s| i | FRBp X0 Re
PO FRTp [SP| /1 | FRBp X0 Re
PO RS 1 RB X0 /
PO rRs | m | m X0 /
PO RS [/|rer| RB X0 /
PO rRs |iI| srR | m X0 /
PO RS [BFA| W] X0 /
PO RS RA I X0 /
PO RS RA I X0 1
PO RS RA I X0 Re
PO RS RA FC X0 /
PO RS RA NB X0 /
PO RS RA SH X0 Re
PO RS RA RB X0 /

Figure 17. Xinstruction format

Chapter 1. Introduction

13

Version 3.0 B

0 6 7 8 910111213141516171819202122232425262728293031

PO RS RA RB X0 1
PO RS RA RB X0 Re
PO RSp | RA RB X0 1
PO RT 1 I X0 /
PO RT 1 RB X0 /
PO RT i RB X0 1
PO RT [m [L] m X0 /
PO RT [/] sr I X0 /
PO RT RA FC X0 /
PO RT RA NB X0 /
PO RT RA RB X0 /
PO RT RA RB X0 B
PO RTp | RA RB X0 B
PO s RA I X0 S
PO s RA RB X0 S
PO T |EO] mwms X0 m
PO T RA I X0 T
PO T RA RB X0 m
PO TH RA RB X0 /
PO TO RA Si X0 1
PO TO RA RB X0 /
PO TO RA RB X0 1
PO VRS | RA RB X0 /
PO VRT | EO | VRB X0 /
PO VRT | EO | VRB X0 RO
PO VRT | RA RB X0 /
PO VRT | VRA | VRB X0 /
PO VRT | VRA | VRB X0 RO

Figure 17. X instruction format

14 Power ISA™ |

Version 3.0 B

1.6.16 XFL-FORM 1.6.21 XX2-FORM
0 67 1516 21 31 0 6 910111213141516 21 2526 293031
| po | FmM MW Fre | X0 e PO [BF[u] B X0 B/
Figure 18. XFL instruction format [PO |BF| DCMX B X0 B4/
| PO RT EO B XO BX| /
1.6.17 XFX-FORM 0 | T | m | B xo i
0 6 Uiz 1516 2021 a1 PO T [m]w| B X0 B
PO I m | m X0 I PO T [fum | B X0 B
PO RS [o] Fxm |/ X0 1 PO T dx B | xo [« xo |ufeinx
PO RS 1 FXM / X0 / | PO T EO B X0 BX|TX
PO RS spr X0 / Figure 23. XX2 instruction format
PO RT |0 " / X0 /
o | Rt | _mwm_] xo || 1.6.22 XX3-FORM
PO RT BHRBE X0 / 0 6 9 11 16 2122 24 293031
PO RT spr X0 / PO BF ‘ 1 A B X0 AX[BX| /
PO RT tbr X0 / PO T A B Of DM XO |AX|BX[TX
Figure 19. XFX instruction format PO T A B |O[SW] XO eI
PO T A B Re X0 AX[BX|TX
1.6.18 XL-FORM PO T A B xo
0 6 9 1 14 16 192021 31 Figure 24. XX3 instruction format
PO n 17 n X0 /
PO 1 I m s X0 / 1.6.23 XX4-FORM
PO BF | 1 BFA‘ " " XO / 0 6 11 16 21 262728293031
PO BO Bl |/ |BH X0 I | o | T | A | B | c [olupp
PO BT BA BB X0 ! Figure 25. XX4 instruction format
Figure 20. XL instruction format
1.6.24 Z7Z22-FORM
1.6_19 XO—FORM 0 6 9 1 1516 22 31
0 6 9 10111213141516171819202122232425262728293031 PO BF | // | FRA DCM X0 /
PO RT RA n OF XO Re PO BF | // FRA DGM XO /
PO RT RA RB / X0 / PO BF | // | FRAp DCM XO /
PO RT RA RB / X0 R PO BF | // | FRAp DGM X0 /
PO RT RA RB |0 XO Re PO FRT FRA SH XO Re
Figure 21. XO instruction format PO FRTp | FRAp | SH X0 Re

Figure 26. Z22 instruction format
1.6.20 XS-FORM
0 6 11 16 21 3031
‘ PO ‘ RS | RA ‘ sh | X0 ‘sh|Rc‘

Figure 22. XS instruction format

Chapter 1. Introduction 15

Version 3.0 B

1.6.25 Z23-FORM

0 6 11 1516 21 23 31
PO FRT | m [»] FRB R X0 Re
PO FRT | FRA | FRB |RIC X0 Re
PO FRT | TE | FRB [Ric X0 Re
PO FRTp | /1 [8| FrRep [mic X0 Re
PO FRTp | FRA | FRBp |RWC X0 Re
PO FRTp | FRAp | FRBp |RIC X0 Re
PO FRTp | TE | FRBp |RiC X0 Re
PO vRT | m [R] vrRe [Ric X0 /
PO VRT | # [r] vrB [Ric X0 B

Figure 27. Z23 instruction format

1.7 Instruction Fields

A (6)
Field used by the tbegin. instruction to specify an
implementation-specific function.

Field used by the tend. instruction to specify the
completion of the outer transaction and all nested
transactions.

Formats: X

AA (30)
Absolute Address.

0 The immediate field represents an address
relative to the current instruction address. For
I-form branches the effective address of the
branch target is the sum of the LI field
sign-extended to 64 bits and the address of
the branch instruction. For B-form branches
the effective address of the branch target is
the sum of the BD field sign-extended to 64
bits and the address of the branch instruction.

1 The immediate field represents an absolute
address. For I-form branches the effective
address of the branch target is the LI field
sign-extended to 64 bits. For B-form branches
the effective address of the branch target is
the BD field sign-extended to 64 bits.

Formats: B, |

AX,A (29,11:15)
Fields that are concatenated to specify a VSR to
be used as a source.

Formats: XX3, XX4

BA (11:15)
Field used to specify a bit in the CR to be used as
a source.

Formats: XL

BB (16:20)
Field used to specify a bit in the CR to be used as
a source.

Formats: XL

BC (21:25)
Field used to specify a bit in the CR to be used as
a source.

Formats: A

BD (16:29)
Immediate field used to specify a 14-bit signed
two's complement branch displacement which is
concatenated on the right with Ob00 and
sign-extended to 64 bits.

Formats: B

BF (6:8)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a target.

Formats: D, X, XL, XX2, XX3, Z22

BFA (11:13)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a source.

Formats: X, XL

BH (19:20)
Field used to specify a hint in the Branch Condi-
tional to Link Register and Branch Conditional to
Count Register instructions. The encoding is
described in Section 2.4, “Branch Instructions”.

Formats: XL

BHRBE (11:20)
Field used to identify the BHRB entry to be used
as a source by the Move From Branch History
Rolling Buffer instruction.

Formats: X

Bl (11:15)
Field used to specify a bit in the CR to be tested by
a Branch Conditional instruction.

Formats: B, XL

BO (6:10)
Field used to specify options for the Branch Condi-
tional instructions. The encoding is described in
Section 2.4, “Branch Instructions”.

Formats: B, XL, X, XL

BT (6:10)
Field used to specify a bit in the CR or in the
FPSCR to be used as a target.

Formats: XL

16 Power ISA™ |

Version 3.0 B

BX,B (30,16:20)
Fields that are concatenated to specify a VSR to
be used as a source.

Formats: XX2, XX3, XX4

CT (7:10)
Field used in X-form instructions to specify a cache
target (see Section 4.3.2 of Book II).

Formats: X

CX,C (28,21:25)
Fields that are concatenated to specify a VSR to
be used as a source.

Formats: XX4

D (16:31)
Immediate field used to specify a 16-bit signed
two’s complement integer which is sign-extended
to 64 bits.

Formats: D

d0,d1,d2 (16:25,11:15,31)
Immediate fields that are concatenated to specify a
16-bit signed two’'s complement integer which is
sign-extended to 64 bits.

Formats: DX

dc,dm,dx (25,29,11:15)
Immediate fields that are concatenated to specify
Data Class Mask.

Formats: XX2

DCM (16:21)
Immediate field used to specify Data Class Mask.

Formats: Z22

DCMX (9:15)
Immediate field used to specify Data Class Mask.

Formats: X, XX2

DGM (16:21)
Immediate field used as the Data Group Mask.

Formats: Z22

DM (22:23)
Immediate field used by xxpermdi instruction as
doubleword permute control.

Formats: XX3

DRM (18:20)
Immediate operand field used to specify new deci-
mal floating-point rounding mode.

Formats: X

DQ (16:27)
Immediate field used to specify a 12-bit signed
two's complement integer which is concatenated

on the right with Ob0000 and sign-extended to 64
bits.

Formats: DQ

DS (16:29)
Immediate field used to specify a 14-bit signed
two’s complement integer which is concatenated
on the right with 0b00 and sign-extended to 64 bits.

Formats: DS

EH (31)
Field used to specify a hint in the Load and
Reserve instructions. The meaning is described in

Section 4.6.2, “Load and Reserve and Store Con-
ditional Instructions”, in Book II.

Formats: X

EO (11:12)
Expanded opcode field
Formats: X

EO (11:15)
Expanded opcode field

Formats: VX, X, XX2

EX (31)
Field used to specify Inexact form of round to
guad-precision integer.

Formats: X

FC (16:20)
Field used to specify the function code in Load/
Store Atomic instructions.

Formats: X

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mtfsf instruction.

Formats: XFL

FRA (11:15)
Field used to specify a FPR to be used as a
source.

Formats: A, X, Z22, Z23

FRAp (11:15)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

Formats: X, Z22, Z23

FRB (16:20)
Field used to specify an FPR to be used as a
source.

Formats: A, X, XFL, Z23

Chapter 1. Introduction 17

Version 3.0 B

FRBp (16:20)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

Formats: X, Z23

FRC (21:25)
Field used to specify an FPR to be used as a
source.

Formats: A

FRS (6:10)
Field used to specify an FPR to be used as a
source.

Formats: D, X

FRSp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

Formats: DS, X

FRT (6:10)
Field used to specify an FPR to be used as a tar-
get.

Formats: A, D, X, Z22, Z23

FRTp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a target.

Formats: DS, X, 7222, Z23

FXM (12:19)
Field mask used to identify the CR fields that are to
be written by the mtcrf and mtocrf instructions, or
read by the mfocrf instruction.

Formats: XFX

IB (16:20)
Immediate field used to specify a 5-bit signed inte-
ger.

Formats: MDS

IH (8:10)
Field used to specify a hint in the SLB Invalidate
All instruction. The meaning is described in
Section 5.9.3.2, “SLB Management Instructions”,
in Book II.

Formats: X

IMM8 (13:20)
Immediate field used to specify an 8-bit integer.

Formats: X

IS (6:10)
Immediate field used to specify a 5-bit signed inte-
ger.

Formats: MDS

L (6)
Field used to specify whether the mtfsf instruction
updates the entire FPSCR.

Formats: XFL

L (9:10)
Field used by the Data Cache Block Flush instruc-
tion (see Section 4.3.2 of Book 1) and also by the
Synchronize instruction (see Section 4.6.3 of Book

1.

Formats: X

L (10)
Field used to specify whether a fixed-point Com-
pare instruction is to compare 64-bit numbers or
32-bit numbers.

Field used by the Compare Range Byte instruction
to indicate whether to compare against 1 or 2
ranges of bytes.

Formats: D, X

L (15)
Field used by the Move To Machine State Register
instruction (see Book IlI).

Field used by the SLB Move From Entry VSID and
SLB Move From Entry ESID instructions for imple-
mentation-specific purposes.

Formats: X

L (14:15)
Field used by the Deliver A Random Number
instruction (see Section 3.3.9, “Fixed-Point Arith-
metic Instructions”) to choose the random number
format.

Formats: X

LEV (20:26)
Field used by the System Call instructions.

Formats: SC

LI (6:29)
Immediate field used to specify a 24-bit signed
two’s complement integer which is concatenated
on the right with ObOO and sign-extended to 64
bits.

Formats: |

LK (31)
LINK bit.

0 Do not set the Link Register.

1 Set the Link Register. The address of the
instruction following the Branch instruction is
placed into the Link Register.

Formats: B, I, XL

18 Power ISA™ |

Version 3.0 B

MB (21:25)
Field used in M-form instructions to specify the first
1-bit of a 64-bit mask, as described in
Section 3.3.14, “Fixed-Point Rotate and Shift
Instructions” on page 101.

Formats: M

mb (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.14, “Fixed-Point Rotate
and Shift Instructions” on page 101.

Formats: MD, MDS

me (21:26)
Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.14, “Fixed-Point Rotate
and Shift Instructions” on page 101.

Formats: MD, MDS

ME (26:30)
Field used in M-form instructions to specify the last
1-bit of a 64-bit mask, as described in
Section 3.3.14, “Fixed-Point Rotate and Shift
Instructions” on page 101.

Formats: M

NB (16:20)
Field used to specify the number of bytes to move
in an immediate Move Assist instruction.

Formats: X

OE (21)
Field used by XO-form instructions to enable set-
ting OV and SO in the XER.

Formats: XO

PO (0:5)
Primary opcode.

Formats: all

PRS (14)
Field used to specify whether to invalidate pro-
cess- or partition-scoped entries for tibie[l].

Formats: X

PS (22)
Field used to specify preferred sign for BCD opera-
tions.

Formats: VX

PT (28:31)
Immediate field used to specify a 4-bit unsigned
value.

Formats: DQ

R (10)
Field used by the tbegin. instruction to specify the
start of a ROT.

Formats: X

R (15)
Immediate field that specifies whether the RMC is
specifying the primary or secondary encoding

Field used to specify whether to invalidate Radix
Tree or HPT entries for tibie][l].

Formats: X, Z23

RA (11:15)
Field used to specify a GPR to be used as a
source or as a target.

Formats: A, D, DQ, DQE, DS, M, MD, MDS, TX,
VA, VX, X, XO, XS

RB (16:20)
Field used to specify a GPR to be used as a
source.

Formats: A, M, MDS, VA, X, XO

Rc (21)
RECORD bit.

0 Do not alter the Condition Register.

1 Set Condition Register Field 6 as described in
Section 2.3.1, “Condition Register” on
page 30.

Formats: VC, XX3

RC (21:25)
Field used to specify a GPR to be used as a
source.

Formats: VA

Rc (31)
RECORD bit.

0 Do not alter the Condition Register.

1 Set Condition Register Field O or Field 1 as
described in Section 2.3.1, “Condition Regis-
ter” on page 30.

Formats: A, M, MD, MDS, X, XFL, XO, XS, Z22,
723

RIC (12:13)
Field used to specify what types of entries to inval-
idate for tibie[l].

Formats: X

RM (19:20)
Immediate operand field used to specify new
binary floating-point rounding mode.

Formats: X

Chapter 1. Introduction 19

Version 3.0 B

RMC (21:22)
Immediate field used for DFP rounding mode con-
trol.

Formats: Z23

RO (31)
Round to Odd override

Formats: X

RS (6:10)
Field used to specify a GPR to be used as a
source.

Formats: D, DS, M, MD, MDS, X, XFX, XS

RSp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a source.

Formats: DS, X

RT (6:10)
Field used to specify a GPR to be used as a target.

Formats: A, D, DQE, DS, DX, VA, VX, X, XFX,
X0, XX2

RTp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a target.

Formats: DQ, X

S (11)
Immediate field that specifies signed versus
unsigned conversion.

Formats: X

S (20)
Immediate field that specifies whether or not the
rfebb instruction re-enables event-based
branches.

Formats: XL

SH (16:20)
Field used to specify a shift amount.

Formats: M, X

SH (16:21)
Field used to specify a shift amount.

Formats: Z22

sh (30,16:20)
Fields that are concatenated to specify a shift
amount.

Formats: MD, XS

SHB (22:25)
Field used to specify a shift amount in bytes.

Formats: VA

SHW (22:23)
Field used to specify a shift amount in words.

Formats: XX3

Sl (16:20)
Immediate field used to specify a 5-bit signed inte-
ger.

Formats: X

S1(16:31)
Immediate field used to specify a 16-bit signed
integer.

Formats: D

SIM (11:15)
Immediate field used to specify a 5-bit signed inte-
ger.

Formats: VX

SP (11:12)
Immediate field that specifies signed versus
unsigned conversion.

Formats: X

SPR (11:20)
Field used to specify a Special Purpose Register
for the mtspr and mfspr instructions.

Formats: X

SR (12:15)
Field used by the Segment Register Manipulation
instructions (see Book III).

Formats: X

SX,S (28,6:10)
Fields SX and S are concatenated to specify a
VSR to be used as a source.

Formats: DQ

SX,S (31,6:10)
Fields SX and S are concatenated to specify a
VSR to be used as a source.

Formats: X

TBR (11:20)
Field used by the Move From Time Base instruc-
tion (see Section 6.1 of Book II).

Formats: X

TE (11:15)
Immediate field that specifies a DFP exponent.
Formats: Z23

TH (6:10)
Field used by the data stream variant of the dcbt
and dcbtst instructions (see Section 4.3.2 of Book

1.

Formats: X

20 Power ISA™ |

Version 3.0 B

TO (6:10)
Field used to specify the conditions on which to
trap. The encoding is described in
Section 3.3.10.1, “Character-Type =~ Compare
Instructions” on page 87.

Formats: TX, X

TX,T (28,6:10)
Fields that are concatenated to specify a VSR to
be used as either a target.

Formats: DQ
TX,T (31,6:10)

Fields that are concatenated to specify a VSR to
be used as either a target or a source.

Formats: X, XX2, XX3, XX4
U (16:19)

Immediate field used as the data to be placed into
a field in the FPSCR.

Formats: X
Ul (16:20)

Immediate field used to specify a 5-bit unsigned
integer.

Formats: TX

Ul (16:31)
Immediate field used to specify a 16-bit unsigned
integer.

Formats: D

UIM (11:15)
Immediate field used to specify a 5-bit unsigned
integer.

Formats: VX, X

UIM (12:15)
Immediate field used to specify a 4-bit unsigned
integer.

Formats: VX, XX2

UIM (13:15)
Immediate field used to specify a 3-bit unsigned
integer.

Formats: VX
UIM (14:15)

Immediate field used to specify a 2-bit unsigned
integer.

Formats: VX, XX2

VRA (11:15)
Field used to specify a VR to be used as a source.

Formats: VA, VC, VX

VRB (16:20)
Field used to specify a VR to be used as a source.

Formats: VA, VC, VX

VRC (21:25)
Field used to specify a VR to be used as a source.

Formats: VA

VRS (6:10)
Field used to specify a VR to be used as a source.

Formats: DS, X

VRT (6:10)
Field used to specify a VR to be used as a target.

Formats: DS, VA, VC, VX, X

W (15)
Field used by the mtfsfi and mtfsf instructions to
specify the target word in the FPSCR.

Formats: X, XFL

WC (9:10)
Field used to specify the condition or conditions
that cause instruction execution to resume after
executing a wait instruction (see Section 4.6.4 of
Book II).

Formats: X

XBI (21:24)
Field used to specify a bit in the XER.

Formats: MDS, MDS, TX

XO (21,23:31)
Extended opcode field.

Formats: VX

XO (21:24,26:28)
Extended opcode field.

Formats: XX2

XO (21:24:28)
Extended opcode field.

Formats: XX3

XO (21:28)
Extended opcode field.

Formats: XX3

XO (21:29)
Extended opcode field.

Formats: XS, XX2

XO (21:30)
Extended opcode field.

Formats: X, XFL, XFX, XL

Chapter 1. Introduction 21

Version 3.0 B

XO (21:31)
Extended opcode field.

Formats: VX

XO (22:30)
Extended opcode field.

Formats: XO, XX3, Z22

XO (22:31)
Extended opcode field.

Formats: VC

XO (23:30)
Extended opcode field.

Formats: X, Z23

XO (25:30)
Extended opcode field.

Formats: TX

XO (26:27)
Extended opcode field.

Formats: XX4

XO (26:30)
Extended opcode field.

Formats: A, DX

XO (26:31)
Extended opcode field.

Formats: VA

XO (27:29)
Extended opcode field.

Formats: MD

XO (27:30)
Extended opcode field.

Formats: MDS

X0 (29:31)
Extended opcode field.

Formats: DQ

XO (30)
Extended opcode field.

Formats: SC

XO (30:31)
Extended opcode field.

Formats: DQE, DS, SC

1.8 Classes of Instructions

An instruction falls into exactly one of the following
three classes:

Defined
lllegal
Reserved

The class is determined by examining the opcode, and
the extended opcode if any. If the opcode, or combina-
tion of opcode and extended opcode, is not that of a
defined instruction or a reserved instruction, the
instruction is illegal.

1.8.1 Defined Instruction Class

This class of instructions contains all the instructions
defined in this document.

A defined instruction can have preferred and/or invalid
forms, as described in Section 1.9.1, “Preferred
Instruction Forms” and Section 1.9.2, “Invalid Instruc-
tion Forms”.

1.8.2

This class of instructions contains the set of instructions
described in Appendix A of Book Appendices. lllegal
instructions are available for future extensions of the
Power ISA ; that is, some future version of the Power
ISA may define any of these instructions to perform
new functions.

lllegal Instruction Class

Any attempt to execute an illegal instruction will cause
the system illegal instruction error handler to be
invoked and will have no other effect.

An instruction consisting entirely of binary 0s is guaran-
teed always to be an illegal instruction. This increases
the probability that an attempt to execute data or unini-
tialized storage will result in the invocation of the sys-
tem illegal instruction error handler.

1.8.3 Reserved Instruction Class

This class of instructions contains the set of instructions
described in Appendix B of Book Appendices.

Reserved instructions are allocated to specific pur-
poses that are outside the scope of the Power ISA.

Any attempt to execute a reserved instruction will:

® perform the actions described by the implementa-
tion if the instruction is implemented; or

B cause the system illegal instruction error handler to
be invoked if the instruction is not implemented.

22 Power ISA™ |

Version 3.0 B

1.9 Forms of Defined Instruc-
tions

1.9.1 Preferred Instruction Forms

Some of the defined instructions have preferred forms.
For such an instruction, the preferred form will execute
in an efficient manner, but any other form may take sig-
nificantly longer to execute than the preferred form.

Instructions having preferred forms are:

B the Condition Register Logical instructions

the Load Quadword instruction

the Move Assist instructions

the Or Immediate instruction (preferred form of
no-op)

H the Move To Condition Register Fields instruction

1.9.2

Some of the defined instructions can be coded in a
form that is invalid. An instruction form is invalid if one
or more fields of the instruction, excluding the opcode
field(s), are coded incorrectly in a manner that can be
deduced by examining only the instruction encoding.

Invalid Instruction Forms

In general, any attempt to execute an invalid form of an
instruction will either cause the system illegal instruc-
tion error handler to be invoked or yield boundedly
undefined results. Exceptions to this rule are stated in
the instruction descriptions.

Some instruction forms are invalid because the instruc-
tion contains a reserved value in a defined field (see
Section 1.3.3 on page 5); these invalid forms are not
discussed further. All other invalid forms are identified
in the instruction descriptions.

References to instructions elsewhere in this document
assume the instruction form is not invalid, unless other-
wise stated or obvious from context.

Assembler Note

Assemblers should report uses of invalid instruc-
tion forms as errors.

1.9.3 Reserved-no-op Instructions

Reserved-no-op instructions include the following
extended opcodes under primary opcode 31: 530, 562,
594, 626, 658, 690, 722, and 754.

Reserved-no-op instructions are provided in the archi-
tecture to anticipate the eventual adoption of perfor-
mance hint instructions to the architecture. For these
instructions, which cause no visible change to archi-
tected state, employing a reserved-no-op opcode will
allow software to use this new capability on new imple-
mentations that support it while remaining compatible

with existing implementations that may not support the
new function.

When a reserved-no-op instruction is executed, no
operation is performed.

Reserved-no-op instructions are not assigned instruc-
tion names or mnemonics. There are no individual
descriptions of reserved-no-op instructions in this docu-
ment.

1.10 Exceptions

There are two kinds of exception, those caused directly
by the execution of an instruction and those caused by
an asynchronous event. In either case, the exception
may cause one of several components of the system
software to be invoked.

The exceptions that can be caused directly by the exe-
cution of an instruction include the following:

B an attempt to execute an illegal instruction, or an
attempt by an application program to execute a
“privileged” instruction (see Book IIl) (system ille-
gal instruction error handler or system privileged
instruction error handler)

B the execution of a defined instruction using an
invalid form (system illegal instruction error han-
dler or system privileged instruction error handler)

B an attempt to execute an instruction that is not pro-
vided by the implementation (system illegal
instruction error handler)

B an attempt to access a storage location that is
unavailable (system instruction storage error han-
dler or system data storage error handler)

B an attempt to access storage with an effective
address alignment that is invalid for the instruction
(system alignment error handler)

B the execution of a System Call or System Call Vec-
tored instruction (system service program)

B the execution of a Trap instruction that traps (sys-
tem trap handler)

B the execution of a floating-point instruction that
causes a floating-point enabled exception to exist
(system floating-point enabled exception error
handler)

B the execution of an auxiliary processor instruction
that causes an auxiliary processor enabled excep-
tion to exist (system auxiliary processor enabled
exception error handler)

The exceptions that can be caused by an asynchro-
nous event are described in Book 111

The invocation of the system error handler is precise,
except that the invocation of the auxiliary processor
enabled exception error handler may be imprecise, and

Chapter 1. Introduction 23

Version 3.0 B

if one of the imprecise modes for invoking the system
floating-point enabled exception error handler is in
effect (see page 133), then the invocation of the system
floating-point enabled exception error handler may also
be imprecise. When the system error handler is
invoked imprecisely, the excepting instruction does not
appear to complete before the next instruction starts
(because one of the effects of the excepting instruction,
namely the invocation of the system error handler, has
not yet occurred).

Additional information about exception handling can be
found in Book III.

1.11 Storage Addressing

A program references storage using the effective
address computed by the processor when it executes a
Storage Access or Branch instruction (or certain other
instructions described in Book Il and Book Ill), or when
it fetches the next sequential instruction.

Bytes in storage are numbered consecutively starting
with 0. Each number is the address of the correspond-

ing byte.

The byte ordering (Big-Endian or Little-Endian) for a
storage access is specified by the operating system.
This byte ordering is also referred to as the Endian
mode and it applies to both data accesses and instruc-
tion fetches. The Endian mode is specified by the LE
mode bit (see Section 3.2.1 of Book IlIl), which applies
to all of storage.

1.11.1 Storage Operands

A storage operand may be a byte, a halfword, a word, a
doubleword, or a quadword, or, for the Load/Store Mul-
tiple and Move Assist instructions, a sequence of bytes
(Move Assist) or words (Load/Store Multiple). The
address of a storage operand is the address of its first
byte (i.e., of its lowest-numbered byte). An instruction
for which the storage operand is a byte is said to cause
a byte access, and similarly for halfword, word, double-
word, and quadword.

The length of the storage operand is the number of
bytes (of the storage operand) that the instruction
would access in the absence of invocations of the sys-
tem error handler. The length is generally implied by
the name of the instruction (equivalently, by the
opcode, and extended opcode if any). For example, the
length of the storage operand of a Load Word and
Zero, Load Floating-Point Single, and Load Vector Ele-
ment Word instruction is four bytes (one word), and the
length of a Store Quadword, Store Floating-Point Dou-
ble Pair, and Store VSX Vector Word*4 instruction is 16
bytes (one quadword). The only exceptions are the
Load/Store Multiple and Move Assist instructions, for
which the length of the storage operand is implied by
the identity of the specified source or target register

(Load/Store Multiple), or by an immediate field in the
instruction or the contents of a field in the XER (Move
Assist), as well as by the name of the instruction. For
example, the length of the storage operand of a Load
Multiple Word instruction for which the specified target
register is GPR 20 is 48 bytes ((32-20)x4), and the
length of the storage operand of a Load String Word
Immediate instruction for which the immediate field
contains the number 20 is 20 bytes.

The storage operand of a Load or Store instruction
other than a Load/Store Multiple or Move Assist instruc-
tion is said to be aligned if the address of the storage
operand is an integral multiple of the storage operand
length; otherwise it is said to be unaligned. See the fol-
lowing table. (The storage operand of a Load/Store
Multiple or Move Assist instruction is neither said to be
aligned nor said to be unaligned. Its alignment proper-
ties are described, when necessary, using terms such
as “word-aligned”, which are defined below.)

Operand Length Addrgg.3 if aligned

Byte 8 hits XXXX

Halfword 2 bytes Xxx0

Word 4 bytes xx00

Doubleword 8 bytes X000

Quadword 16 bytes 0000

Note: An “X” in an address bit position indicates that
the bit can be 0 or 1 independent of the contents of
other bits in the address.

The concept of alignment is also applied more gener-

ally, to any datum in storage.

B A datum having length that is an integral power of
2 is said to be aligned if its address is an integral
multiple of its length.

m A datum of any length is said to be half-
word-aligned (or aligned at a halfword boundary) if
its address is an integral multiple of 2,
word-aligned (or aligned at a word boundary) if its
address is an integral multiple of 4, etc. (All data in
storage is byte-aligned.)

The concept of alignment can also be applied to data in
registers, with the "address" of the datum interpreted as
the byte number of the datum in the register. E.g., a
word element (4 bytes) in a Vector Register is said to
be aligned if its byte number is an integral multiple of 4.

—— Programming Note

The technical literature sometimes uses the term
“naturally aligned” to mean “aligned.”

Versions of the architecture that precede Version
2.07 also used “naturally aligned” as defined
above. The term was dropped from the architecture
in Version 2.07 because it seemed to mean differ-
ent things to different readers and is not needed.

24 Power ISA™ |

Version 3.0 B

Some instructions require their storage operands to
have certain alignments. In addition, alignment may
affect performance. In general, the best performance is
obtained when storage operands are aligned.

When a storage operand of length N bytes starting at
effective address EA is copied between storage and a
register that is R bytes long (i.e., the register contains
bytes numbered from 0, most significant, through R-1,
least significant), the bytes of the operand are placed
into the register or into storage in a manner that
depends on the byte ordering for the storage access as
shown in Figure 28, unless otherwise specified in the
instruction description.

Big-Endian Byte Ordering

Load Store

for i=0 to N-1: for i=0 to N-1:

RT(R-N)—H(_ MEM(EA+i,1) MEM(EA+i,1) « (RS)(R-N)+i
Little-Endian Byte Ordering

Load Store
for i=0 to N-1: for i=0 to N-1:
RT(R_l)_i < MEM(EA+i,1) |MEM(EA+i,1) « (RS)(R_l)_i

Notes:

1. In this table, subscripts refer to bytes in a register
rather than to bits as defined in Section 1.3.2.

2. This table does not apply to the Ivebx, Ivehx,
Ivewx, stvebx, stvehx, and stvewx instructions.

Figure 28. Storage operands and byte ordering

Figure 29 shows an example of a C language
structure s containing an assortment of scalars and
one character string. The value assumed to be in each
structure element is shown in hex in the C comments;
these values are used below to show how the bytes
making up each structure element are mapped into
storage. It is assumed that structure s is compiled for
32-bit mode or for a 32-bit implementation. (This affects
the length of the pointer to c.)

C structure mapping rules permit the use of padding
(skipped bytes) in order to align the scalars on desir-
able boundaries. Figures 30 and 31 show each scalar
as aligned. This alignment introduces padding of four
bytes between a and b, one byte between d and e, and
two bytes between e and f. The same amount of pad-
ding is present for both Big-Endian and Little-Endian
mappings.

The Big-Endian mapping of structure s is shown in
Figure 30. Addresses are shown in hex at the left of
each doubleword, and in small figures below each byte.
The contents of each byte, as indicated in the C exam-
ple in Figure 29, are shown in hex (as characters for
the elements of the string).

The Little-Endian mapping of structure s is shown in
Figure 31. Doublewords are shown laid out from right
to left, which is the common way of showing storage
maps for processors that implement only Little-Endian
byte ordering.

struct {
int a; [* 0x1112_1314 word */
double b; [* 0x2122 2324 2526 2728 doubleword */
char* ¢; [* 0x3132_3334 word */
char dir}; ~ ‘A,'B,‘C,'D,E,'F, ‘G array of bytes */
short e€; /* 0x5152 halfword */
int f; [* 0x6162_6364 word */

}s;

Figure 29. C structure ‘s’, showing values of
elements

00 11 12 13 14

00 01 02 03 04 05 06 07
08 21 22 23 24 25 26 27 28

08 09 0A 0B 0OC 0D OE OF
10 31 32 33 34 |‘'A’ ‘B’ ‘C’ ‘D’

10 1 12 13 14 15 16 17
18 ‘E’ ‘F' G 51 52

18 19 1A 1B ic 1p | 1E 1F
20 61 62 63 64

20 21 22 23

Figure 30. Big-Endian mapping of structure ‘s’

11 12 13 14 00

07 06 05 04 03 02 o1 00
21 22 23 24 25 26 27 28 08

OF OE oD oc 0B OA 09 08
‘D’ ‘C’ ‘B’ ‘A’| 31 32 33 34 10

17 16 15 14 13 12 1 10
51 52 ‘G’ ‘F' ‘E’ 18

1F 1E 1D 1Cc 1B 1A 19 18
61 62 63 64 20

23 22 21 20

Figure 31. Little-Endian mapping of structure ‘s’

Chapter 1. Introduction 25

Version 3.0 B

1.11.2 Instruction Fetches

Instructions are always four bytes long and
word-aligned.

When an instruction starting at effective address EA is
fetched from storage, the relative order of the bytes
within the instruction depend on the byte ordering for
the storage access as shown in Figure 32.

Big-Endian Byte Ordering
for i=0 to 3:
inst; « MEM(EA+i,1)
Little-Endian Byte Ordering
for i=0 to 3:
instz; « MEM(EA+i,1)
Note: In this table, subscripts refer to

bytes of the instruction rather than
to bits as defined in Section 1.3.2.

Figure 32. Instructions and byte ordering

Figure 33 shows an example of a small assembly lan-
guage program p.

loop:
cmplwi r5,0
beq done
lwzux rd4,r5,16
add r7,r7,r4
subi r5,r5,4
b loop
done:
stw r7,total

Figure 33. Assembly language program ‘p’

The Big-Endian mapping of program p is shown in
Figure 34 (assuming the program starts at address 0).

beq done
07 06 05 04

loop: cmplwi r5,0
03 02 01 00

add r7,r7,r4

OF OE 0D 0C

lwzux r4,r5,r6

0B 0A 09 08

b loop
17 16 15 14

subi r5,r5,4

13 12 11 10

1F 1E 1D ic

done: stw r7,total

1B 1A 19 18

00 loop: cmplwi r5,0

00 01 02 03

beg done
04 05 06 07

08 lwzux r4,r5,16 add r7,r7,r4
08 09 0A 0B oC 0D OE OF
10 subi r5,r5,4 b loop

Figure 35. Little-Endian mapping of program ‘p’

00

08

10

18

10 11 12 13 14 15 16 17

18 done: stw r7,total

18 19 1A 1B ic 1D 1E 1F

Figure 34. Big-Endian mapping of program ‘p’

The Little-Endian mapping of program p is shown in
Figure 35.

26 Power ISA™ |

Version 3.0 B

Programming Note

The terms Big-Endian and Little-Endian come from
Part I, Chapter 4, of Jonathan Swift's Gulliver’s Travels.
Here is the complete passage, from the edition printed
in 1734 by George Faulkner in Dublin.

... our Histories of six Thousand Moons make no
Mention of any other Regions, than the two great
Empires of Lilliput and Blefuscu. Which two mighty
Powers have, as | was going to tell you, been
engaged in a most obstinate War for six and thirty
Moons past. It began upon the following Occasion.
It is allowed on all Hands, that the primitive Way of
breaking Eggs before we eat them, was upon the
larger End: But his present Majesty’s Grand-father,
while he was a Boy, going to eat an Egg, and
breaking it according to the ancient Practice, hap-
pened to cut one of his Fingers. Whereupon the
Emperor his Father, published an Edict, command-
ing all his Subjects, upon great Penalties, to break
the smaller End of their Eggs. The People so
highly resented this Law, that our Histories tell us,
there have been six Rebellions raised on that
Account; wherein one Emperor lost his Life, and
another his Crown. These civil Commotions were
constantly fomented by the Monarchs of Blefuscu;
and when they were quelled, the Exiles always fled
for Refuge to that Empire. It is computed that
eleven Thousand Persons have, at several Times,
suffered Death, rather than submit to break their
Eggs at the smaller End. Many hundred large Vol-
umes have been published upon this Controversy:
But the Books of the Big-Endians have been long

forbidden, and the whole Party rendered incapable
by Law of holding Employments. During the
Course of these Troubles, the Emperors of Ble-
fuscu did frequently expostulate by their Ambassa-
dors, accusing us of making a Schism in Religion,
by offending against a fundamental Doctrine of our
great Prophet Lustrog, in the fifty-fourth Chapter of
the Brundrecal, (which is their Alcoran.) This, how-
ever, is thought to be a mere Strain upon the text:
For the Words are these; That all true Believers
shall break their Eggs at the convenient End: and
which is the convenient End, seems, in my humble
Opinion, to be left to every Man’s Conscience, or
at least in the Power of the chief Magistrate to
determine. Now the Big-Endian Exiles have found
so much Credit in the Emperor of Blefuscu’s Court;
and so much private Assistance and Encourage-
ment from their Party here at home, that a bloody
War has been carried on between the two Empires
for six and thirty Moons with various Success;
during which Time we have lost Forty Capital
Ships, and a much greater Number of smaller Ves-
sels, together with thirty thousand of our best Sea-
men and Soldiers; and the Damage received by
the Enemy is reckoned to be somewhat greater
than ours. However, they have now equipped a
numerous Fleet, and are just preparing to make a
Descent upon us: and his Imperial Majesty, placing
great Confidence in your Valour and Strength, hath
commanded me to lay this Account of his Affairs
before you.

1.11.3 Effective Address Calcula-
tion

An effective address is computed by the processor
when executing a Storage Access or Branch instruction
(or certain other instructions described in Book Il and
Book Ill) when fetching the next sequential instruction,
or when invoking a system error handler. The following
provides an overview of this process. More detail is
provided in the individual instruction descriptions.

Effective address calculations, for both data and
instruction accesses, use 64-bit two's complement
addition. All 64 bits of each address component partici-
pate in the calculation regardless of mode (32-bit or
64-bit). In this computation one operand is an address
(which is by definition an unsigned number) and the
second is a signed offset. Carries out of the most signif-
icant bit are ignored.

In 64-bit mode, the entire 64-bit result comprises the
64-bit effective address. The effective address arithme-

tic wraps around from the maximum address, 264 - 1,
to address 0, except that if the current instruction is at
effective address 2% - 4 the effective address of the
next sequential instruction is undefined.

In 32-bit mode, the low-order 32 bits of the 64-bit result,
preceded by 32 0 bits, comprise the 64-bit effective
address for the purpose of addressing storage, except
that if the current instruction is at effective address
232_ 4 the 64-bit effective address of the next sequen-
tial instruction is undefined. Thus, as used to address
storage, the effective address arithmetic appears to
wrap around from the maximum address 2%2-1, to
address 0, except when the resulting 64-bit effective
address is undefined as just described. When an effec-
tive address is placed into a register by an instruction
or event, the value placed into the register is as follows.
B Register RA when set by Load with Update and
Store with Update instructions: the entire 64-bit
result.
m All other cases (e.g., the Link Register when set by
Branch instructions having LK=1, Special Purpose

Chapter 1. Introduction 27

Version 3.0 B

Registers when set to an effective address by invo-
cation of a system error handler): the low-order 32
bits of the 64-bit result preceded by 32 0 bits,
except that if the intended effective address is that
of the NIA of the instruction at effective address

232_4 the value placed into the register is unde-
fined.

RA is a field in the instruction which specifies an
address component in the computation of an effective
address. A zero in the RA field indicates the absence of
the corresponding address component. A value of zero
is substituted for the absent component of the effective
address computation. This substitution is shown in the
instruction descriptions as (RA|0).

Effective addresses are computed as follows. In the
descriptions below, it should be understood that “the
contents of a GPR” refers to the entire 64-bit contents,
independent of mode, but that in 32-bit mode only bits
32:63 of the 64-bit result of the computation are used to
address storage.

B With X-form instructions, in computing the effective
address of a data element, the contents of the
GPR designated by RB (or the value zero for Iswi
and stswi) are added to the contents of the GPR
designated by RA or to zero if RA=0 or RA is not
used in forming the EA.

B With D-form instructions, the 16-bit D field is
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

B With DS-form instructions, the 14-bit DS field is
concatenated on the right with 0b0O and
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

B With DQ-form instructions, the 12-bit DQ field is
concatenated on the right with Ob0O000 and
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

B With I-form Branch instructions, the 24-bit LI field
is concatenated on the right with 0bOO and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the target instruction. If AA=1,
this address component is the effective address of
the target instruction.

B With B-form Branch instructions, the 14-bit BD field
is concatenated on the right with 0bOO and

sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the target instruction. If AA=1,
this address component is the effective address of
the target instruction.

m \With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concate-
nated on the right with Ob00 to form the effective
address of the target instruction.

B With sequential instruction fetching, the value 4 is
added to the address of the current instruction to
form the effective address of the next instruction,
except that if the current instruction is at the maxi-
mum instruction effective address for the mode
(2% - 4 in 64-bit mode, 232 - 4 in 32-bit mode) the
effective address of the next sequential instruction
is undefined.

If the size of the operand of a Storage Access instruc-
tion is more than one byte, the effective address for
each byte after the first is computed by adding 1 to the
effective address of the preceding byte.

28 Power ISA™ |

Version 3.0 B

Chapter 2. Branch Facility

2.1 Branch Facility Overview

This chapter describes the registers and instructions
that make up the Branch Facility.

2.2 Instruction Execution Order

In general, instructions appear to execute sequentially,
in the order in which they appear in storage. The
exceptions to this rule are listed below.

B Branch instructions for which the branch is taken
cause execution to continue at the target address
specified by the Branch instruction.

W Trap instructions for which the trap conditions are
satisfied, and System Call and System Call Vec-
tored instructions, cause the appropriate system
handler to be invoked.

W Transaction failure will eventually cause the trans-
action’s failure handler, implied by the tbegin.
instruction, to be invoked. See the programming
note following the tbegin. description in
Section 5.5 of Book II.

B Event-based exceptions can cause the
event-based branch handler to be invoked, as
described in Chapter 7 of Book II.

B Exceptions can cause the system error handler to
be invoked, as described in Section 1.10, “Excep-
tions” on page 23.

B Returning from a system service program, system
trap handler, or system error handler causes exe-
cution to continue at a specified address.

The model of program execution in which the proces-
sor appears to execute one instruction at a time, com-
pleting each instruction before beginning to execute the
next instruction is called the “sequential execution
model”. In general, the processor obeys the sequential
execution model. For the instructions and facilities
defined in this Book, the only exceptions to this rule are
the following.

m A floating-point exception occurs when the proces-
sor is running in one of the Imprecise floating-point
exception modes (see Section 4.4). The instruction
that causes the exception need not complete
before the next instruction begins execution, with

respect to setting exception bits and (if the excep-
tion is enabled) invoking the system error handler.

A Store instruction modifies one or more bytes in
an area of storage that contains instructions that
will subsequently be executed. Before an instruc-
tion in that area of storage is executed, software
synchronization is required to ensure that the
instructions executed are consistent with the
results produced by the Store instruction.

—— Programming Note

This software synchronization will generally be
provided by system library programs (see
Section 1.9 of Book II). Application programs
should call the appropriate system library pro-
gram before attempting to execute modified
instructions.

Chapter 2. Branch Facility 29

Version 3.0 B

2.3 Branch Facility Registers

2.3.1 Condition Register

The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides a
mechanism for testing (and branching).

| CR
32 63

Figure 36. Condition Register

The bits in the Condition Register are grouped into
eight 4-bit fields, named CR Field 0 (CRO0), ..., CR Field
7 (CRY), which are set in one of the following ways.

B Specified fields of the CR can be set by a move to
the CR from a GPR (mtcrf, mtocrf).

B A specified field of the CR can be set by a move to
the CR from another CR field (mcrf), from OV, CA,
0OV32, and CA32 (mcrxrx), or from the FPSCR
(mcrfs).

B CR Field 0 can be set as the implicit result of a
fixed-point instruction.

B CR Field 1 can be set as the implicit result of a
floating-point instruction.

B CR Field 1 can be set as the implicit result of a
decimal floating-point instruction.

B CR Field 6 can be set as the implicit result of a
vector instruction.

B A specified CR field can be set as the result of a
Compare instruction or of a tcheck instruction (see
Book II).

Instructions are provided to perform logical operations
on individual CR bits and to test individual CR bits.

For all fixed-point instructions in which Rc=1, and for
addic., andi., and andis., the first three bits of CR Field
0 (bits 32:34 of the Condition Register) are set by
signed comparison of the result to zero, and the fourth
bit of CR Field 0 (bit 35 of the Condition Register) is
copied from the SO field of the XER. “Result” here
refers to the entire 64-bit value placed into the target
register in 64-bit mode, and to bits 32:63 of the 64-bit
value placed into the target register in 32-bit mode.

if (64-bit mode)

then M € 0

else M € 32
if (target_register)y.q; < 0 then ¢ ¢ 0b100
else if (target register)y.q; > 0 then c ¢ 0b010
else c € 0b001
CRO ¢ ¢ || XERgo

If any portion of the result is undefined, then the value
placed into the first three bits of CR Field 0 is unde-
fined.

The bits of CR Field 0 are interpreted as follows.

Bit Description
0 Negative (LT)

The result is negative.
1 Positive (GT)

The result is positive.
2 Zero (EQ)

The result is zero.

3 Summary Overflow (SO)
This is a copy of the contents of XERgg at the
completion of the instruction.

With the exception of tcheck, the Transactional Mem-
ory instructions set CRO,., indicating the state of the
facility prior to instruction execution, or transaction fail-
ure. A complete description of the meaning of these
bits is given in the instruction descriptions in
Section 5.5 of Book Il. These bits are interpreted as
follows:

CRO Description

000 || 0 |Transaction state of Non-transactional prior

to instruction

010 || 0 |Transaction state of Transactional prior to
instruction

001 || 0 |Transaction state of Suspended prior to
instruction

101 || 0 [Transaction failure

The tcheck instruction similarly sets bits 1 and 2 of CR
field BF to indicate the transaction state, and addition-
ally sets bit 0 to TDOOMED, as defined in Section 5.5
of Book II.

CR field BF
TDOOMED [00 || 0

Description

Transaction state of Non-trans-
actional prior to instruction

Transaction state of Transac-
tional prior to instruction

TDOOMED || 10 || 0

TDOOMED || 01 ||O0 |Transaction state of Sus-

pended prior to instruction

Programming Note

Setting of bit 3 of the specified CR field to zero by
tcheck and of field CRO3; to zero by other TM
instructions is intended to preserve these bits for
future function. Software should not depend on the
bits being zero.

30 Power ISA™ |

Version 3.0 B

The paste. instruction (see Section 4.4, “Copy-Paste
Facility”, in Book Il) and the stbcx., sthex., stwex.,
stdex., and stgcx. instructions (see Section 4.6.2,
“Load and Reserve and Store Conditional Instructions”,
in Book 1) also set CR Field 0.

For all floating-point instructions in which Rc=1, CR
Field 1 (bits 36:39 of the Condition Register) is set to
the Floating-Point exception status, copied from bits
32:35 of the Floating-Point Status and Control Register.
This occurs regardless of whether any exceptions are
enabled, and regardless of whether the writing of the
result is suppressed (see Section 4.4, “Floating-Point
Exceptions” on page 132). These bits are interpreted
as follows.

Bit Description

32 Floating-Point Exception Summary (FX)
This is a copy of the contents of FPSCRgx at
the completion of the instruction.

33 Floating-Point Enabled Exception Sum-
mary (FEX)
This is a copy of the contents of FPSCRggx at
the completion of the instruction.

34 Floating-Point Invalid Operation Excep-
tion Summary (VX)
This is a copy of the contents of FPSCRy/x at
the completion of the instruction.

35 Floating-Point Overflow Exception (OX)
This is a copy of the contents of FPSCRy at
the completion of the instruction.

For Compare instructions, a specified CR field is set to
reflect the result of the comparison. The bits of the
specified CR field are interpreted as follows. A com-
plete description of how the bits are set is given in the
instruction descriptions in Section 3.3.10, “Fixed-Point
Compare Instructions” on page 84, and Section 4.6.8,
“Floating-Point Compare Instructions” on page 167.

Bit Description
0 Less Than, Floating-Point Less Than (LT,
FL)

For fixed-point Compare instructions, (RA) <
Sl or (RB) (signed comparison) or (RA) < Ul
or (RB) (unsigned comparison). For float-
ing-point Compare instructions, (FRA) <
(FRB).

1 Greater Than, Floating-Point Greater Than
(GT, FG)
For fixed-point Compare instructions, (RA) >
Sl or (RB) (signed comparison) or (RA) > Ul
or (RB) (unsigned comparison). For float-
ing-point Compare instructions, (FRA) >
(FRB).

2 Equal, Floating-Point Equal (EQ, FE)
For fixed-point Compare instructions, (RA) =

SI, Ul, or (RB). For floating-point Compare
instructions, (FRA) = (FRB).

3 Summary Overflow, Floating-Point Unor-
dered (SO,FU)
For fixed-point Compare instructions, this is a
copy of the contents of XERgg at the comple-
tion of the instruction. For floating-point Com-
pare instructions, one or both of (FRA) and
(FRB) is a NaN.

The Vector Integer Compare instructions (see
Section 6.9.3, “Vector Integer Compare Instructions”)
compare two Vector Registers element by element,
interpreting the elements as unsigned or signed inte-
gers depending on the instruction, and set the corre-
sponding element of the target Vector Register to all 1s
if the relation being tested is true and Os if the relation
being tested is false.

If Rc=1, CR Field 6 is set to reflect the result of the
comparison, as follows

Bit Description

0 The relation is true for all element pairs (i.e.,
VRT is set to all 1s).
0

2 The relation is false for all element pairs (i.e.,
VRT is set to all 0s).

3 0

The Vector Floating-Point Compare instructions com-
pare two Vector Registers word element by word ele-
ment, interpreting the elements as single-precision
floating-point numbers. With the exception of the Vector
Compare Bounds Floating-Point instruction, they set
the target Vector Register, and CR Field 6 if Rc=1, in
the same manner as do the Vector Integer Compare
instructions.

Bit Description

0 The relation is true for all element pairs (i.e.,
VRT is set to all 1s).
0

2 The relation is false for all element pairs (i.e.,
VRT is set to all 0s).

3 0

The Vector Compare Bounds Floating-Point instruction
on page 328 sets CR Field 6 if Rc=1, to indicate
whether the elements in VRA are within the bounds
specified by the corresponding element in VRB, as
explained in the instruction description. A single-preci-
sion floating-point value x is said to be “within the
bounds” specified by a single-precision floating-point
valueyif-y <x<y.

Chapter 2. Branch Facility 31

Version 3.0 B

Bit Description
0 0
0
2 Set to indicate whether all four elements in

VRA are within the bounds specified by the
corresponding element in VRB, otherwise set
to 0.

3 0

2.3.2 Link Register

The Link Register (LR) is a 64-bit register. It can be
used to provide the branch target address for the
Branch Conditional to Link Register instruction, and it
holds the return address after Branch instructions for
which LK=1 and after System Call Vectored instruc-
tions.

LR
0 63

Figure 37. Link Register

2.3.3 Count Register

The Count Register (CTR) is a 64-bit register. It can be
used to hold a loop count that can be decremented
during execution of Branch instructions that contain an
appropriately coded BO field. If the value in the Count
Register is 0 before being decremented, it is -1 after-
ward. The Count Register can also be used to provide
the branch target address for the Branch Conditional to
Count Register instruction. The Count Register is mod-
ified by the System Call Vectored instruction.

CTR
0 63

Figure 38. Count Register

2.3.4 Target Address Register

The Target Address Register (TAR) is a 64-hbit register.
It can be used to provide bits 0:61 of the branch target
address for the Branch Conditional to Branch Target
Address Register instruction. Bits 62:63 are ignored by
the hardware but can be set and reset by software.

Efffective Address | |
0 62

Figure 39. Target Address Register

Programming Note
Fhe TAR is reserved for system software.

<BHRB material moved to Chapter 8 of Book I1.>

32 Power ISA™ |

Version 3.0 B

2.4 Branch Instructions

The sequence of instruction execution can be changed
by the Branch instructions. Because all instructions are
on word boundaries, bits 62 and 63 of the generated
branch target address are ignored by the processor in
performing the branch.

The Branch instructions compute the effective address
(EA) of the target in one of the following five ways, as
described in Section 1.11.3, “Effective Address Calcu-
lation” on page 27.

1. Adding a displacement to the address of the
Branch instruction (Branch or Branch Conditional
with AA=0).

2. Specifying an absolute address (Branch or Branch
Conditional with AA=1).

3. Using the address contained in the Link Register
(Branch Conditional to Link Register).

4. Using the address contained in the Count Register
(Branch Conditional to Count Register).

5. Using the address contained in the Target Address
Register (Branch Conditional to Target Address
Register).

In all five cases, in 32-bit mode the final step in the
address computation is setting the high-order 32 bits of
the target address to 0.

For the first two methods, the target addresses can be
computed sufficiently ahead of the Branch instruction
that instructions can be prefetched along the target
path. For the third through fifth methods, prefetching
instructions along the target path is also possible pro-
vided the Link Register or the Count Register is loaded
sufficiently ahead of the Branch instruction.

Branching can be conditional or unconditional, and the
return address can optionally be provided. If the return
address is to be provided (LK=1), the effective address
of the instruction following the Branch instruction is
placed into the Link Register after the branch target
address has been computed; this is done regardless of
whether the branch is taken.

For Branch Conditional instructions, the BO field speci-
fies the conditions under which the branch is taken, as
shown in Figure 40. In the figure, M=0 in 64-bit mode
and M=32 in 32-bit mode.

BO Description

0000z | Decrement the CTR, then branch if the dec-
remented CTR);.3#0 and CRg,=0

0001z | Decrement the CTR, then branch if the dec-
remented CTR),.g3=0 and CRg=0

00lat | Branch if CRg=0

0100z | Decrement the CTR, then branch if the dec-
remented CTR);.3#0 and CRg=1

0101z | Decrement the CTR, then branch if the dec-
remented CTR),.g3=0 and CRg=1

0llat | Branch if CRg=1

1a00t | Decrement the CTR, then branch if the dec-
remented CTRy;.3#0

1a01t | Decrement the CTR, then branch if the dec-
remented CTR);.¢3=0

1z1zz | Branch always

Notes:
1. “z” denotes a bit that is ignored.
2. The “a” and “t” bits are used as described below.

Figure 40. BO field encodings

The “a” and “t” bits of the BO field can be used by soft-
ware to provide a hint about whether the branch is
likely to be taken or is likely not to be taken, as shown
in Figure 41.

at Hint

00 No hint is given

01 Reserved

10 The branch is very likely not to be taken
11 The branch is very likely to be taken

Figure 41. “at” bit encodings

— Programming Note

Many implementations have dynamic mechanisms
for predicting whether a branch will be taken.
Because the dynamic prediction is likely to be very
accurate, and is likely to be overridden by any hint
provided by the “at” bits, the “at” bits should be set
to Ob0O0 unless the static prediction implied by
at=0b10 or at=0b11 is highly likely to be correct.

For Branch Conditional to Link Register, Branch Condi-
tional to Count Register, and Branch Conditional to Tar-
get Address Register instructions, the BH field provides

Chapter 2. Branch Facility 33

Version 3.0 B

a hint about the use of the instruction, as shown in
Figure 42.

BH Hint

00 bclr[l]: The instruction is a subroutine
return

bcctr[l] and bctar[l]:The instruction is not a
subroutine return; the target
address is likely to be the same as
the target address used the pre-
ceding time the branch was taken

01 belrl]: The instruction is not a subroutine
return; the target address is likely to
be the same as the target address
used the preceding time the branch
was taken

bcctr[l] and bctar[l]:Reserved
10 Reserved

11 bclr[l], becctr[l], and bctar[l]: The target
address is not predictable

Figure 42. BH field encodings

Programming Note

The hint provided by the BH field is independent of
the hint provided by the “at” bits (e.g., the BH field
provides no indication of whether the branch is
likely to be taken).

Extended mnemonics for branches

Many extended mnemonics are provided so that
Branch Conditional instructions can be coded with por-
tions of the BO and Bl fields as part of the mnemonic
rather than as part of a numeric operand. Some of
these are shown as examples with the Branch instruc-
tions. See Appendix C for additional extended mne-
monics.

—— Programming Note

The hints provided by the “at” bits and by the BH
field do not affect the results of executing the
instruction.

The “z” bits should be set to 0, because they may
be assigned a meaning in some future version of
the architecture.

34 Power ISA™ |

Version 3.0 B

Programming Note

Many implementations have dynamic mechanisms for
predicting the target addresses of bclr[l] and bcctr[l]
instructions. These mechanisms may cache return
addresses (i.e., Link Register values set by Branch
instructions for which LK=1 and for which the branch
was taken, other than the special form shown in the first
example below) and recently used branch target
addresses. To obtain the best performance across the
widest range of implementations, the programmer
should obey the following rules.

B Use Branch instructions for which LK=1 only as
subroutine calls (including function calls, etc.), or in
the special form shown in the first example below.

B Pair each subroutine call (i.e., each Branch
instruction for which LK=1 and the branch is taken,
other than the special form shown in the first
example below) with a bclr instruction that returns
from the subroutine and has BH=0b00.

B Do not use bclrl as a subroutine call. (Some imple-
mentations access the return address cache at
most once per instruction; such implementations
are likely to treat bclrl as a subroutine return, and
not as a subroutine call.)

B For bcelr[l] and bcectr[l], use the appropriate value
in the BH field.

The following are examples of programming conven-
tions that obey these rules. In the examples, BH is
assumed to contain 0b0OO unless otherwise stated. In
addition, the “at” bits are assumed to be coded appro-
priately.

Let A, B, and Glue be specific programs.

B Obtaining the address of the next instruction:
Use the following form of Branch and Link.
bcl 20,31,8+4

B | oop counts:
Keep them in the Count Register, and use a bc
instruction (LK=0) to decrement the count and to
branch back to the beginning of the loop if the dec-
remented count is nonzero.

B Computed goto’s, case statements, etc.:
Use the Count Register to hold the address to

branch to, and use a bcctr instruction (LK=0, and
BH=0b11 if appropriate) to branch to the selected
address.

Direct subroutine linkage:

Here A calls B and B returns to A. The two

branches should be as follows.

- Acalls B: use a bl or bcl instruction (LK=1).

- B returns to A: use a bclr instruction (LK=0)
(the return address is in, or can be restored to,
the Link Register).

Indirect subroutine linkage:

Here A calls Glue, Glue calls B, and B returns to A
rather than to Glue. (Such a calling sequence is
common in linkage code used when the subroutine
that the programmer wants to call, here B, is in a
different module from the caller; the Binder inserts
“glue” code to mediate the branch.) The three
branches should be as follows.

- A calls Glue: use a bl or bcl instruction
(LK=1).

- Glue calls B: place the address of B into the
Count Register, and use a bcctr instruction
(LK=0).

- B returns to A: use a bclr instruction (LK=0)
(the return address is in, or can be restored to,
the Link Register).

Function call:

Here A calls a function, the identity of which may
vary from one instance of the call to another,
instead of calling a specific program B. This case
should be handled using the conventions of the
preceding two bullets, depending on whether the
call is direct or indirect, with the following differ-
ences.

- If the call is direct, place the address of the
function into the Count Register, and use a
bcctrl instruction (LK=1) instead of a bl or bcl
instruction.

- For the bcctr[l] instruction that branches to
the function, use BH=0b11 if appropriate.

Chapter 2. Branch Facility 35

Version 3.0 B

—— Compatibility Note

The bits corresponding to the current “a” and “t”
bits, and to the current “z” bits except in the “branch
always” BO encoding, had different meanings in
versions of the architecture that precede Version
2.00.

B The bit corresponding to the “t” bit was called
the “y” bit. The “y” bit indicated whether to use
the architected default prediction (y=0) or to
use the complement of the default prediction
(y=1). The default prediction was defined as
follows.

- If the instruction is bc[l][a] with a negative
value in the displacement field, the branch
is taken. (This is the only case in which
the prediction corresponding to the “y” bit
differs from the prediction corresponding
to the “t” bit.)

- In all other cases (bc[l][a] with a nonnega-
tive value in the displacement field, bclr[l],
or bcctr[l]), the branch is not taken.

B The BO encodings that test both the Count
Register and the Condition Register had a “y”
bit in place of the current “z” bit. The meaning
of the “y” bit was as described in the preceding
item.

B The “a” bit was a “z” bit.

Because these hits have always been defined
either to be ignored or to be treated as hints, a
given program will produce the same result on any
implementation regardless of the values of the bits.
Also, because even the “y” bit is ignored, in prac-
tice, by most processors that comply with versions
of the architecture that precede Version 2.00, the
performance of a given program on those proces-
sors will not be affected by the values of the bits.

36 Power ISA™ |

Version 3.0 B

Branch I-form Branch Conditional B-form
b target_addr (AA=0 LK=0) bc BO,Bl,target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0) bca BO,Bl target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1) bcl BO,Bl target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1) bcla BO,Bl,target_addr (AA=1 LK=1)
18 LI AA LK 16 BO BI BD AA| LK
0 6 30 | 31 0 6 11 16 3031

if AA then NIA «; ., EXTS(LI || 0b00)
else NIA «;., CIA + EXTS(LI || 0b00)

if LK then LR ¢;., CIA + 4

lea

target_addr specifies the branch target address.

If AA=0 then the branch target address is the sum of
LI'|| ObOO sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
LI || ObOO sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

if (64-bit mode)

then M « 0
else M « 32
if —BO, then CTR ¢ CTR - 1
ctr ok ¢« BO, | ((CTRy.q3 # 0) © BO,)

cond ok € BO, | (CRprys» = BO;)
if ctr ok & cond ok then
if AA then NIA «;., EXTS(BD || 0b0O0)

else NIA ¢,;., CIA + EXTS(BD || 0b0O0)
if LK then LR €,

jea CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 40. target_addr specifies the branch target
address.

If AA=0 then the branch target address is the sum of
BD || Ob00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
BD || Ob0O sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional:

Extended: Equivalent to:

bit target bc 12,0,target
bne cr2 target bc 4,10,target
bdnz target bc 16,0,target

Chapter 2. Branch Facility 37

Version 3.0 B

Branch Conditional to Link Register

Branch Conditional to Count Register

XL-form XL-form
belr BO,BI,BH (LK=0) beetr BO,BI,BH (LK=0)
belrl BO,BI,BH (LK=1) bectrl BO,BI,BH (LK=1)

19 BO BI /Il TBH 16 LK 19 BO BI /Il TBH 528 LK
(6] 6 11 16 19 (21 31 0 6 11 16 19 |21 31

if (64-bit mode)

then M < 0
else M « 32
if —BO, then CTR ¢« CTR - 1
ctr ok ¢« BO, | ((CTRy.¢3 # 0) @ BO,

cond ok € BO, | (CRgr,3; = BO;)
if ctr ok & cond ok then NIA ¢, ., LRy || 0b0O
if LK then LR ¢;__ CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 40. The BH field is used as described in
Figure 42. The branch target address is LRg.g; || 0b0O,
with the high-order 32 bits of the branch target address
set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Link Register:

Extended: Equivalent to:
bclr 4,6 bclr 4,6,0
blitlr bclr 12,0,0
bnelr cr2 bclr 4,10,0
bdnzir bclr 16,0,0

—— Programming Note

bclr, belrl, becetr, and bectrl each serve as both a
basic and an extended mnemonic. The Assembler
will recognize a bclr, bclrl, bccetr, or beetrl mne-
monic with three operands as the basic form, and a
bclr, bclrl, bcctr, or beetrl mnemonic with two
operands as the extended form. In the extended
form the BH operand is omitted and assumed to be
0b00.

cond ok € BO, | (CRprys, = BO;)
if cond ok then NIA «,., CTRy..; || 0b0O
if LK then LR €, CIA + 4

lea

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 40. The BH field is used as described in
Figure 42. The branch target address is
CTRg.61 || Ob00, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

If the “decrement and test CTR” option is specified
(BO,=0), the instruction form is invalid.

Special Registers Altered:
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Count Register.

Extended: Equivalent to:
becetr 4,6 bccetr 4,6,0
bltctr bccetr 12,0,0
bnectr cr2 bcctr 4,10,0

38 Power ISA™ |

Version 3.0 B

Branch Conditional to Branch Target
Address Register

XL-form
bctar BO,BI,BH (LK=0)
betarl BO,BI,BH (LK=1)

19 BO Bl /Il |BH 560 LK
0 6 11 16 19 |21 31

if (64-bit mode)

then M < 0
else M « 32
if —BO, then CTR ¢« CTR - 1
ctr ok ¢« BO, | ((CTRy.¢3 # 0) @ BO,

cond ok € BO, | (CRgr,3, = BO;)
if ctr ok & cond ok then NIA «;., TAR,..; || 0b00O
if LK then LR €., CIA + 4

lea

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 40. The BH field is used as described in
Figure 42. The branch target address is
TAR(.61 || Ob00, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

—— Programming Note

In some systems, the system software will restrict
usage of the bctar[l] instruction to only selected
programs. If an attempt is made to execute the
instruction when it is not available, the system error
handler will be invoked. See Book Il for additional
information.

Chapter 2. Branch Facility

39

Version 3.0 B

2.5 Condition Register Instructions

2.5.1 Condition Register Logical Instructions

The Condition Register Logical instructions have pre-
ferred forms; see Section 1.9.1. In the preferred forms,
the BT and BB fields satisfy the following rule.
B The bit specified by BT is in the same Condition
Register field as the bit specified by BB.

Extended mnemonics for Condition
Register logical operations

A set of extended mnemonics is provided that allow
additional Condition Register logical operations,
beyond those provided by the basic Condition Register
Logical instructions, to be coded easily. Some of these
are shown as examples with the Condition Register
Logical instructions. See Appendix C for additional
extended mnemonics.

Condition Register AND XL-form Condition Register NAND XL-form
crand BT,BA,BB crnand BT,BA,BB

19 BT BA BB 257 / 19 BT BA BB 225 /
0 6 11 16 21 31 0 6 11 16 21 31
CReri32 € CRpas3z & CRpp.sn CRpri32 € 7(CRpp.3z & CRppi3n)

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered:
CRpT4+32

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered:
CRpT+32

Condition Register OR XL-form Condition Register XOR XL-form
cror BT,BA,BB crxor BT,BA,BB

19 BT BA BB 449 / 19 BT BA BB 193 /
0 6 11 16 21 31 0 6 11 16 21 31

CRyry32 € CRpasaz | CRppyaz

The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the result is placed into the bit in the Con-
dition Register specified by BT+32.
Special Registers Altered:

CRpr432

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter OR:

Extended: Equivalent to:
crmove Bx,By cror Bx,By,By

CRpry32 € CRpar3zz @ CRppuin

The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered:
CRpT1432
Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter XOR:

Extended:
crclr Bx

Equivalent to:
crxor Bx,Bx,Bx

40 Power ISA™ |

Version 3.0 B

Condition Register NOR XL-form Condition Register Equivalent XL-form
crnor BT,BA,BB creqv BT,BA,BB

19 BT BA BB 33 / 19 BT BA BB 289 /
0 6 11 16 21 31 0 6 11 16 21 31
CRBT+32 < _'(CRBA+32 | CRBB+32) CRBT+32 < CRBA+32 = cRBB+32

The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the complemented result is placed into the
bit in the Condition Register specified by BT+32.
Special Registers Altered:

CRpT4+32
Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter NOR:

Extended: Equivalent to:
crnot Bx,By crnor Bx,By,By

Condition Register AND with Complement

The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered:
CRpT+32
Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter Equivalent:

Extended:
crset Bx

Equivalent to:
creqv Bx,Bx,Bx

Condition Register OR with Complement

XL-form XL-form

crandc BT,BA,BB crorc BT,BA,BB
19 BT BA BB 129 / 19 BT BA BB 417 /
0 6 11 16 21 31 0 6 11 16 21 31

CRpri32 € CRpay3z & 7CRppy3n

The bit in the Condition Register specified by BA+32 is
ANDed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRpT+32

CRpri32 € CRpas3z | 7CRap.az

The bit in the Condition Register specified by BA+32 is
ORed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRp1432

2.5.2 Condition Register Field Instruction

Move Condition Register Field XL-form
mcrf BF,BFA

19 BF [//[BFA I 1l 0 /
0 6 9 |11 14 (16 21 31

CR4><BF+32 :4XBF+35 < cR4><BFA+32:4><BFA+35
The contents of Condition Register field BFA are copied
to Condition Register field BF.

Special Registers Altered:
CR field BF

Chapter 2. Branch Facility 41

Version 3.0 B

2.6 System Call Instructions

These instructions provide the means by which a pro-
gram can call upon the system to perform a service.

System Call SC-form
sc LEV

17 i 17 1] LEV [/ 1]/
(o] 6 11 16 20 27 |30(31
System Call Vectored SC-form
scv LEV

17 n I 1 LEV [/ o1
(o] 6 11 16 20 27 |30(31

These instructions call the system to perform a service.
A complete description of these instructions can be
found in Section 3.3.1 of Book III.

The first form of the instruction (sc) provides a single
system call. The second form of the instruction (scv)
provides the capability for 128 unique system calls.

The use of the LEV field is described in Book Ill. In the
first form of the instruction the LEV values greater than
1 are reserved, and bits 0:5 of the LEV field (instruction
bits 20:25) are treated as a reserved field.

When control is returned to the program that executed
the System Call or System Call Vectored instruction,
the contents of the registers will depend on the register
conventions used by the program providing the system
service.

These instructions are context synchronizing (see Book

1.

Special Registers Altered:
Dependent on the system service

—— Programming Note

sc serves as both a basic and an extended mne-
monic. The Assembler will recognize an sc mne-
monic with one operand as the basic form, and an
sc mnemonic with no operand as the extended
form. In the extended form the LEV operand is
omitted and assumed to be 0.

In application programs the value of the LEV oper-
and for sc should be 0.

Programming Note

Since the scv instruction modifies the Count Regis-
ter, programs should treat the contents of the Count
Register as undefined after executing this instruc-
tion. See Section 3.3 of Book IlI.

42 Power ISA™ |

Version 3.0 B

| <BHRB material moved to Chapter 8 of Book Il.>

Chapter 2. Branch Facility 43

Version 3.0 B

44 Power ISA™ |

Version 3.0 B

Chapter 3. Fixed-Point Facility

3.1 Fixed-Point Facility Overview

This chapter describes the registers and instructions
that make up the Fixed-Point Facility.

3.2 Fixed-Point Facility Registers

3.2.1 General Purpose Registers

All manipulation of information is done in registers
internal to the Fixed-Point Facility. The principal storage
internal to the Fixed-Point Facility is a set of 32 General
Purpose Registers (GPRs). See Figure 43.

GPRO
GPR 1

GPR 30
GPR 31
0 63

Figure 43. General Purpose Registers

Each GPR is a 64-bit register.

3.2.2 Fixed-Point Exception
Register

The Fixed-Point Exception Register (XER) is a 64-bit
register.

XER
0 63

Figure 44. Fixed-Point Exception Register

The bit definitions for the Fixed-Point Exception Regis-
ter are shown below. Here M=0 in 64-bit mode and
M=32 in 32-bit mode.

The bits are set based on the operation of an instruc-
tion considered as a whole, not on intermediate results
(e.g., the Subtract From Carrying instruction, the result
of which is specified as the sum of three values, sets
bits in the Fixed-Point Exception Register based on the
entire operation, not on an intermediate sum).

Bit(s Description
0:31 Reserved

32 Summary Overflow (SO)
The Summary Overflow bit is set to 1 when-
ever an instruction (except mtspr and addex)
sets the Overflow bit. Once set, the SO bit
remains set until it is cleared by an mtspr
instruction (specifying the XER). It is not
altered by Compare instructions, or by other
instructions (except mtspr to the XER and
addex with operand CY=0) that cannot over-
flow. Executing an mtspr instruction to the
XER, supplying the values 0 for SO and 1 for
OV, causes SO to be setto 0 and OV to be set
to 1. addex does not alter the contents of SO.

33 Overflow (OV)

The Overflow bit is set to indicate that an over-
flow has occurred during execution of an
instruction. The Overflow bit can also used as
an independent Carry bit by using the addex
with operand CY=0 instruction and avoiding
other instructions that modify the Overflow bit
(e.g., any XO-form instruction with OE=1).

XO-form Add, Subtract From, and Negate
instructions having OE=1 set it to 1 if the carry
out of bit M is not equal to the carry out of bit
M+1, and set it to O otherwise.

Chapter 3. Fixed-Point Facility 45

Version 3.0 B

34

35:43
44

45

46:56

57:63

XO-form Multiply Low and Divide instructions
having OE=1 set it to 1 if the result cannot be
represented in 64 bits (mulld, divd, divde,
divdu, divdeu) or in 32 bits (mullw, divw,
divwe, divwu, divweu), and set it to 0 other-
wise.

addex with operand CY=0 sets OV to 1 if there
is a carry out of bit M, and sets it to O other-
wise.

The 0V bit is not altered by Compare instruc-
tions, or by other instructions (except mtspr to
the XER) that cannot overflow.

Carry (CA)

The Carry bit is set as follows, during execu-
tion of certain instructions. Add Carrying, Sub-
tract From Carrying, Add Extended, and
Subtract From Extended types of instructions
set it to 1 if there is a carry out of bit M, and
set it to 0 otherwise. Shift Right Algebraic
instructions set it to 1 if any 1-bits have been
shifted out of a negative operand, and set it to
0 otherwise. The CA bit is not altered by Com-
pare instructions, or by other instructions
(except Shift Right Algebraic, mtspr to the
XER) that cannot carry.

Reserved
Overflow32 (OV32)

OV32 is set whenever OV is implicitly set, and
is set to the same value that OV is defined to
be set to in 32-bit mode.

Carry32 (CA32)

CA32 is set whenever CA is implicitly set, and
is set to the same value that CA is defined to
be set to in 32-bit mode.

Reserved

Bits 48:55 are implemented, and can be read
and written by software as if the bits contained
a defined field.

This field specifies the number of bytes to be
transferred by a Load String Indexed or Store
String Indexed instruction.

—— Programming Note

Bits 48:55 of the XER correspond to bits 16:23 of
the XER in the POWER Architecture. In the
POWER Architecture bits 16:23 of the XER contain
the comparison byte for the Iscbx instruction.
Power ISA lacks the Iscbx instruction, but some
application programs that run on processors that
implement Power ISA may still use Iscbx, and
privileged software may emulate the instruction.
XER4g:55 may be assigned a meaning in a future
version of the architecture, when POWER compati-
bility for Iscbx is no longer needed, so these bits
should not be used for purposes other than the
Iscbx comparison byte.

3.2.3 VR Save Register

| VRSAVE

32 63

The VR Save Register (VRSAVE) is a 32-bit register
that can be used as a software use SPR; see Section
6.3.3.

46

Power ISA™ |

Version 3.0 B

3.3 Fixed-Point Facility Instructions

3.3.1 Fixed-Point Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.11.3 on page 27.

Programming Note

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address.

—— Programming Note

The DS field in DS-form Storage Access instruc-
tions is a word offset, not a byte offset like the D
field in D-form Storage Access instructions. How-
ever, for programming convenience, Assemblers
should support the specification of byte offsets for
both forms of instruction.

3.3.1.1 Storage Access Exceptions

Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is unavail-
able.

3.3.2 Fixed-Point Load Instructions

The byte, halfword, word, or doubleword in storage
addressed by EA is loaded into register RT.

Many of the Load instructions have an “update” form, in
which register RA is updated with the effective address.
For these forms, if RA#0 and RA=#RT, the effective
address is placed into register RA and the storage ele-
ment (byte, halfword, word, or doubleword) addressed
by EAis loaded into RT.

—— Programming Note

In some implementations, the Load Algebraic and
Load with Update instructions may have greater
latency than other types of Load instructions. More-
over, Load with Update instructions may take lon-
ger to execute in some implementations than the
corresponding pair of a non-update Load instruc-
tion and an Add instruction.

Chapter 3. Fixed-Point Facility 47

Version 3.0 B

Load Byte and Zero D-form Load Byte and Zero Indexed X-form
Ibz RT,D(RA) Ibzx RT,RA,RB

34 RT RA D 31 RT RA RB 87 /
0 6 11 16 31 0 6 11 16 21 31

if RA =0 thenb < 0
else b « (Ra)
EA ¢ b + EXTS(D)

RT « 560 || MEM(EA, 1)

Let the effective address (EA) be the sum (RA|0)+ D.
The byte in storage addressed by EA is loaded into
RTs6:63- RTo:-55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero with Update D-form

Ibzu RT,D(RA)

35 RT RA D
0 6 11 16 31

EA < (RA) + EXTS(D)
RT « 560 || MEM(EA, 1)
RA € EA

Let the effective address (EA) be the sum (RA)+ D. The
byte in storage addressed by EA is loaded into RTgg.63.
RTo.55 are set to 0.

EAis placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

if RA = 0 then b « 0
else b « (RA)
EA ¢ b + (RB)

RT « %0 || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The byte in storage addressed by EA is
loaded into RTsg.63. RTg.55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero with Update Indexed

X-form

Ibzux RT,RA,RB
31 RT RA RB 119 /
0 6 11 16 21 31

EA ¢ (RA) + (RB)
RT ¢ %0 || MEM(EA, 1)
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ (RB).
The byte in storage addressed by EA is loaded into
RT56263' RTO:55 are setto 0.

EAis placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

48 Power ISA™ |

Version 3.0 B

Load Halfword and Zero D-form Load Halfword and Zero Indexed X-form
Ihz RT,D(RA) lhzx RT,RA,RB

40 RT RA D 31 RT RA RB 279 /
(6] 6 11 16 31 0 6 11 16 21 31

if RA =0 thenb < 0
else b « (Ra)
EA ¢« b + EXTS(D)

RT « “%0 || MEM(EA, 2)

Let the effective address (EA) be the sum (RA|0)+ D.
The halfword in storage addressed by EA is loaded into
RTy4g:63- RTg-47 are setto 0.

Special Registers Altered:
None

Load Halfword and Zero with Update

if RA = 0 then b « 0
else b « (Ra)
EA < b + (RB)

RT « *%0 || MEM(EA, 2)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The halfword in storage addressed by
EA is loaded into RT48263' RTO:47 are setto 0.

Special Registers Altered:
None

Load Halfword and Zero with Update

D-form Indexed X-form

lhzu RT,D(RA) Ihzux RT,RA,RB
41 RT RA D 31 RT RA RB 311 /
0 6 11 16 31 0 6 11 16 21 31

EA « (RA) + EXTS(D)
RT ¢« %80 || MEM(EA, 2)
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ D. The
halfword in storage addressed by EA is loaded into
RT48263' RTO:47 are set to 0.

EAis placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA ¢ (RA) + (RB)
RT ¢ %80 || MEM(EA, 2)
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded into
RT48263' RTO:47 are setto 0.

EAis placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 49

Version 3.0 B

Load Halfword Algebraic D-form Load Halfword Algebraic Indexed X-form
lha RT,D(RA) Ihax RT,RA,RB

42 RT RA D 31 RT RA RB 343 /
0 6 11 16 31 0 6 11 16 21 31

if RA =0 thenb < 0
else b « (Ra)
EA ¢ b + EXTS(D)

RT ¢ EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum (RA|0)+ D.
The halfword in storage addressed by EA is loaded into
RT4g.63- RTg:47 are filled with a copy of bit 0 of the
loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update

if RA = 0 then b « 0
else b « (RA)
EA < b + (RB)

RT ¢ EXTS(MEM(ERA, 2))

Let the effective address (EA) be the sum
(RA|0)+ (RB). The halfword in storage addressed by
EA is loaded into RT4g.63. RTq.47 are filled with a copy
of bit 0 of the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update

D-form Indexed X-form

lhau RT,D(RA) Ihaux RT,RA,RB
43 RT RA D 31 RT RA RB 375 /
0 6 11 16 31 0 6 11 16 21 31

EA ¢« (RA) + EXTS(D)
RT € EXTS(MEM(EA, 2))
RA « EA

Let the effective address (EA) be the sum (RA)+ D. The
halfword in storage addressed by EA is loaded into
RT4s5.63- RTg.47 are filled with a copy of bit O of the
loaded halfword.

EAis placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA < (RA) + (RB)
RT ¢« EXTS(MEM(EA, 2))
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded into
RT4g8.63- RTg.47 are filled with a copy of bit 0O of the
loaded halfword.

EAis placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

50 Power ISA™ |

Version 3.0 B

Load Word and Zero D-form Load Word and Zero Indexed X-form
lwz RT,D(RA) lwzx RT,RA,RB

32 RT RA D 31 RT RA RB 23 /
(6] 6 11 16 31 0 6 11 16 21 31

if RA =0 thenb < 0
else b « (Ra)
EA ¢ b + EXTS(D)

RT « 20 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0)+ D.
The word in storage addressed by EA is loaded into
RT32.63. RT-3; are setto 0.

Special Registers Altered:
None

Load Word and Zero with Update D-form

lwzu RT,D(RA)

33 RT RA D
0 6 11 16 31

if RA = 0 then b « 0
else b « (RA)
EA ¢ b + (RB)

RT « 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The word in storage addressed by EA is
loaded into RT3;,.63. RTg.31 are set to 0.

Special Registers Altered:
None

Load Word and Zero with Update Indexed

EA < (RA) + EXTS(D)
RT « 20 || MEM(EA, 4)
RA € EA

Let the effective address (EA) be the sum (RA)+ D. The
word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

X-form

Iwzux RT,RA,RB
31 RT RA RB 55 /
0 6 11 16 21 31

EA ¢ (RA) + (RB)
RT ¢ 320 || MEM(EA, 4)
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT32:63. RT0231 are setto 0.

EAis placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 51

Version 3.0 B

3.3.2.1 64-bit Fixed-Point Load Instructions

Load Word Algebraic DS-form Load Word Algebraic Indexed X-form
lwa RT,DS(RA) lwax RT,RA,RB

58 RT RA DS 2 31 RT RA RB 341 /
0 6 11 16 30 31 0 6 11 16 21 31

if RA =0 thenb ¢« 0
else b « (Ra)
EA ¢« b + EXTS(DS || 0b00)
RT ¢ EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA|0)+ (DS||0b00). The word in storage addressed by
EA is loaded into RT35.63. RTq.3; are filled with a copy
of bit O of the loaded word.

Special Registers Altered:
None

if RA = 0 then b « 0
else b « (Ra)
EA ¢« b + (RB)

RT & EXTS(MEM(ER, 4))

Let the effective address (EA) be the sum
(RA|0)+ (RB). The word in storage addressed by EA is
loaded into RT35.63. RTq.3; are filled with a copy of bit 0
of the loaded word.

Special Registers Altered:
None

Load Word Algebraic with Update Indexed

X-form

Iwaux RT,RA,RB
31 RT RA RB 373 /
0 6 11 16 21 31

EA < (RA) + (RB)
RT € EXTS(MEM(ER, 4))
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT3,.63. RTg.31 are filled with a copy of bit O of the
loaded word.

EAis placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

52 Power ISA™ |

Version 3.0 B

Load Doubleword DS-form Load Doubleword Indexed X-form
Id RT,DS(RA) ldx RT,RA,RB

58 RT RA DS 0 31 RT RA RB 21 /
(6] 6 11 16 30 31 0 6 11 16 21 31

if RA = 0 then b « 0
else b < (RA)
EA < b + EXTS(DS || 0b00)
RT ¢ MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ (DS||0b00). The doubleword in storage
addressed by EA is loaded into RT.

Special Registers Altered:
None

Load Doubleword with Update DS-form
Idu RT,DS(RA)

58 RT RA DS 1
0 6 11 16 30 31

if RA = 0 then b « 0
else b « (RA)
EA < b + (RB)

RT « MEM(ERA, 8)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The doubleword in storage addressed by
EA s loaded into RT.

Special Registers Altered:
None

Load Doubleword with Update Indexed

EA « (RA) + EXTS(DS || 0b00)
RT ¢ MEM(EA, 8)
RA € EA

Let the effective address (EA) be the sum
(RA)+ (DS||0b00). The doubleword in storage
addressed by EA is loaded into RT.

EAis placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

X-form

Idux RT,RA,RB
31 RT RA RB 53 /
0 6 11 16 21 31

EA < (RA) + (RB)
RT « MEM(ER, 8)
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ (RB).
The doubleword in storage addressed by EA is loaded
into RT.

EAis placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 53

Version 3.0 B

3.3.3 Fixed-Point Store Instructions

The contents of register RS are stored into the byte,
halfword, word, or doubleword in storage addressed by
EA.

Many of the Store instructions have an “update” form,
in which register RA is updated with the effective
address. For these forms, the following rules apply.

B If RA=0, the effective address is placed into regis-
ter RA.

B If RS=RA, the contents of register RS are copied to
the target storage element and then EA is placed
into RA (RS).

Store Byte D-form Store Byte Indexed X-form
stb RS,D(RA) stbx RS,RA,RB

38 RS RA D 31 RS RA RB 215 /
0 6 11 16 31 0 6 11 16 21 31

if RA =0 thenb « 0
else b « (RA)
EA € b + EXTS(D)
MEM(EA, 1) € (RS)ss.¢3

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)s6.63 are stored into the byte in storage addressed
by EA.

Special Registers Altered:
None

if RA = 0 then b « 0
else b « (RA)
EA ¢« b + (RB)

MEM(EA, 1) ¢ (RS)ss.¢3

Let the effective address (EA) be the sum
(RAJO)+ (RB). (RS)5¢.63 are stored into the byte in stor-
age addressed by EA.

Special Registers Altered:
None

Store Byte with Update D-form Store Byte with Update Indexed X-form
stbu RS,D(RA) stbux RS,RARB

39 RS RA D 31 RS RA RB 247 /
0 6 11 16 31 0 6 11 16 21 31

EA € (RA) + EXTS(D)
MEM(EA, 1) € (RS)sq.63
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)s56.63 are stored into the byte in storage addressed
by EA.

EAis placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA ¢« (RA) + (RB)
MEM(EA, 1) € (RS)s5g.63
RA < EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)s56:63 are stored into the byte in storage addressed
by EA.

EAis placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

54 Power ISA™ |

Version 3.0 B

Store Halfword D-form Store Halfword Indexed X-form
sth RS,D(RA) sthx RS,RA,RB

44 RS RA D 31 RS RA RB 407 /
(6] 6 11 16 31 0 6 11 16 21 31

if RA =0 thenb < 0
else b « (Ra)
EA ¢ b + EXTS(D)
MEM(EA, 2) € (RS)4g5.43

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)4g:63 are stored into the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Halfword with Update D-form
sthu RS,D(RA)

45 RS RA D
0 6 11 16 31

EA € (RA) + EXTS(D)
MEM(EA, 2) € (RS)4g.63
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)4g:63 are stored into the halfword in storage
addressed by EA.

EAis placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

if RA = 0 then b « 0
else b « (RA)
EA < b + (RB)

MEM(ER, 2) € (RS)45.63

Let the effective address (EA) be the sum
(RAJO)+ (RB). (RS)4g:63 are stored into the halfword in
storage addressed by EA.

Special Registers Altered:
None

Store Halfword with Update Indexed

X-form

sthux RS,RA,RB
31 RS RA RB 439 /
0 6 11 16 21 31

EA < (RA) + (RB)
MEM(EA, 2) € (RS),5.¢3
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)4g.63 are stored into the halfword in storage
addressed by EA.

EAis placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 55

Version 3.0 B

Store Word D-form Store Word Indexed X-form
stw RS,D(RA) stwx RS,RA,RB

36 RS RA D 31 RS RA RB 151 /
(6] 6 11 16 31 0 6 11 16 21 31

if RA =0 thenb < 0
else b « (Ra)
EA ¢ b + EXTS(D)
MEM(EA, 4) € (RS)35.43

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)32:63 are stored into the word in storage addressed
by EA.

Special Registers Altered:
None

if RA = 0 then b « 0
else b « (RA)
EA < b + (RB)

MEM(EA, 4) € (RS)35.¢3

Let the effective address (EA) be the sum
(RAJO)+ (RB). (RS)3,.63 are stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Word with Update D-form Store Word with Update Indexed X-form
stwu RS,D(RA) stwux RS,RA,RB

37 RS RA D 31 RS RA RB 183 /
0 6 11 16 31 0 6 11 16 21 31

EA € (RA) + EXTS(D)
MEM(EA, 4) € (RS)3;.63
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)3,.63 are stored into the word in storage addressed
by EA.

EAis placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA ¢« (RA) + (RB)
MEM(EA, 4) € (RS)3;.¢3
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)32.63 are stored into the word in storage addressed
by EA.

EAis placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

56 Power ISA™ |

Version 3.0 B

3.3.3.1 64-bit Fixed-Point Store Instructions

Store Doubleword DS-form Store Doubleword Indexed X-form
std RS,DS(RA) stdx RS,RA,RB

62 RS RA DS 0 31 RS RA RB 149 /
0 6 11 16 30 31 0 6 11 16 21 31

if RA =0 thenb ¢« 0
else b « (Ra)
EA ¢« b + EXTS(DS || 0b00)
MEM(EA, 8) ¢« (RS)

Let the effective address (EA) be the sum
(RA|0)+ (DS||0b00). (RS) is stored into the doubleword
in storage addressed by EA.

Special Registers Altered:
None

Store Doubleword with Update DS-form
stdu RS,DS(RA)

62 RS RA DS 1
(o] 6 11 16 30 31

EA « (RA) + EXTS(DS || 0b00)
MEM (EA, 8) < (RS)
RA € EA

Let the effective address (EA) be the sum
(RA)+ (DS||0b00). (RS) is stored into the doubleword in
storage addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

if RA = 0 then b « 0
else b « (Ra)
EA ¢« b + (RB)

MEM (EA, 8) ¢« (RS)

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS) is stored into the doubleword in
storage addressed by EA.

Special Registers Altered:
None

Store Doubleword with Update Indexed

X-form

stdux RS,RA,RB
31 RS RA RB 181 /
0 6 11 16 21 31

EA < (RA) + (RB)
MEM(EA, 8) ¢« (RS)
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS) is stored into the doubleword in storage
addressed by EA.

EAis placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 57

Version 3.0 B

3.3.4 Fixed Point Load and Store Quadword Instructions

For g, the quadword in storage addressed by EA is
loaded into an even-odd pair of GPRs as follows. In
Big-Endian mode, the even-numbered GPR is loaded
with the doubleword from storage addressed by EA
and the odd-numbered GPR is loaded with the double-
word addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is loaded with the byte-reversed
doubleword from storage addressed by EA+8 and the
odd-numbered GPR is loaded with the byte-reversed
doubleword addressed by EA.

In the preferred form of the Load Qudword instruction
RA = RTp+1.

For stq, the contents of an even-odd pair of GPRs is
stored into the quadword in storage addressed by EA
as follows. In Big-Endian mode, the even-numbered
GPR is stored into the doubleword in storage
addressed by EA and the odd-numbered GPR is stored
into the doubleword addressed by EA+8. In Lit-
tle-Endian mode, the even-numbered GPR is stored
byte-reversed into the doubleword in storage
addressed by EA+8 and the odd-numbered GPR is
stored byte-reversed into the doubleword addressed by
EA.

—— Programming Note

The Ig and stq instructions exist primarily to permit
software to access quadwords in storage “atomi-
cally"; see Section 1.4 of Book Il. Because GPRs
are 64 bits long, the Fixed-Point Facility on many
designs is optimized for storage accesses of at
most eight bytes. On such designs, the quadword
atomicity required for Iq and stq makes these
instructions complex to implement, with the result
that the instructions may perform less well on these
designs than the corresponding two Load Double-
word or Store Doubleword instructions.

The complexity of providing quadword atomicity
may be especially great for storage that is Write
Through Required or Caching Inhibited (see
Section 1.6 of Book Il). This is why Iq and stq are
permitted to cause the data storage error handler to
be invoked if the specified storage location is in
either of these kinds of storage (see Section
3.3.1.1).

Load Quadword DQ-form
Iq RTp,DQ(RA)

56 RTp | RA DQ i
0 6 11 16 28 31

if RA = 0 then b « 0

else b < (RA)

EA < b + EXTS(DQ || 0b0000)
RTp < MEM(ER, 16)

Let the effective address (EA) be the sum (RA|O)+
(DQ||0b0000). The quadword in storage addressed by
EA is loaded into register pair RTp.

If RTp is odd or RTp=RA, the instruction form is invalid.
If RTp=RA, an attempt to execute this instruction will
invoke the system illegal instruction error handler. (The
RTp=RA case includes the case of RTp=RA=0.)

The quadword in storage addressed by EA is loaded
into an even-odd pair of GPRs as follows. In
Big-Endian mode, the even-numbered GPR is loaded
with the doubleword from storage addressed by EA
and the odd-numbered GPR is loaded with the double-
word addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is loaded with the byte-reversed
doubleword from storage addressed by EA+8 and the
odd-numbered GPR is loaded with the byte-reversed
doubleword addressed by EA.

Programming Note

In versions of the architecture prior to V. 2.07, this
instruction was privileged.

Special Registers Altered:
None

58 Power ISA™ |

Version 3.0 B

Store Quadword DS-form
stq RSp,DS(RA)

62 RSp | RA DS 2
0 6 11 16 3031

if RA =0 thenb €0
else b < (RA)
EA ¢« b + EXTS(DS || 0b00)
MEM(EA, 16) < RSp

Let the effective address (EA) be the sum (RA|O)+
(DS||0b00). The contents of register pair RSp are
stored into the quadword in storage addressed by EA.

If RSp is odd, the instruction form is invalid.

The contents of an even-odd pair of GPRs is stored into
the quadword in storage addressed by EA as follows.
In Big-Endian mode, the even-numbered GPR is stored
into the doubleword in storage addressed by EA and
the odd-numbered GPR is stored into the doubleword
addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is stored byte-reversed into the
doubleword in storage addressed by EA+8 and the
odd-numbered GPR is stored byte-reversed into the
doubleword addressed by EA.

Programming Note

In versions of the architecture prior to V. 2.07, this
instruction was privileged.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility

59

Version 3.0 B

3.3.5 Fixed-Point Load and Store with Byte Reversal Instructions

Programming Note

These instructions have the effect of loading and
storing data in the opposite byte ordering from that
which would be used by other Load and Store
instructions.

Programming Note

In some implementations, the Load Byte-Reverse
instructions may have greater latency than other
Load instructions.

Load Halfword Byte-Reverse Indexed

Store Halfword Byte-Reverse Indexed

X-form X-form

Ihbrx RT,RA,RB sthbrx RS,RA,RB
31 RT RA RB 790 / 31 RS RA RB 918 /
0 6 11 16 21 31 0 6 11 16 21 31

if RA = 0 then b € 0

else b « (RA)

EA € b + (RB)

load data ¢ MEM(ERA, 2)

RT ¢« %80 || load datag,,s || load datay.-

Let the effective address (EA) be the sum (RA|0)+(RB).
Bits 0:7 of the halfword in storage addressed by EA are
loaded into RTgg.63. Bits 8:15 of the halfword in storage
addressed by EA are loaded into RT,g.55. RTg.47 are
setto 0.

Special Registers Altered:
None

Load Word Byte-Reverse Indexed X-form

Iwbrx RT,RA,RB

if RA = 0 then b « 0

else b < (RA)
EA € b + (RB)
MEM(EA, 2) € (RS)se.63 || (RS)4g.ss

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)56.63 are stored into bits 0:7 of the
halfword in storage addressed by EA. (RS)sg.55 are
stored into bits 8:15 of the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Word Byte-Reverse Indexed X-form

stwbrx RS,RA,RB

31 RT RA RB 534 /

0 6 11 16 21 31

31 RS RA RB 662 /
0 6 11 16 21 31

if RA = 0 then b « 0

else b « (RA)

EA € b + (RB)

load data ¢ MEM(EA, 4)

RT ¢« 320 || load data,,.,, || load datag.,,
|| load datag.;s || load data,.,

Let the effective address (EA) be the sum
(RA|0)+ (RB). Bits 0:7 of the word in storage addressed
by EA are loaded into RTgg.¢3. Bits 8:15 of the word in
storage addressed by EA are loaded into RT,g.55. Bits
16:23 of the word in storage addressed by EA are
loaded into RT,4q.47. Bits 24:31 of the word in storage
addressed by EA are loaded into RT35.39. RTg.31 are
setto 0.

Special Registers Altered:
None

if RA = 0 then b « 0

else b « (RA)

EA € b + (RB)

MEM(EA, 4) € (RS)sg.63 || (RS)4g.s5 || (RS)40.47
[1(RS) 35,30

Let the effective address (EA) be the sum
(RAJO)+ (RB). (RS)s56.63 are stored into bits 0:7 of the
word in storage addressed by EA. (RS),g.55 are stored
into bits 8:15 of the word in storage addressed by EA.
(RS)40:47 are stored into bits 16:23 of the word in stor-
age addressed by EA. (RS)35.39 are stored into bits
24:31 of the word in storage addressed by EA.

Special Registers Altered:
None

60 Power ISA™ |

Version 3.0 B

3.3.5.1 64-Bit Load and Store with Byte Reversal Instructions

Load Doubleword Byte-Reverse Indexed

Store Doubleword Byte-Reverse Indexed

X-form X-form

Idbrx RT,RA,RB stdbrx RS,RA,RB
31 RT RA RB 532 / 31 RS RA RB 660 /
(6] 6 11 16 21 31 0 6 11 16 21 31

if RA =0 thenb « 0
else b « (RA)
EA ¢ b + (RB)

load data ¢ MEM(EA, 8)

RT ¢« load datagg.q3 || load datagg.ss
|| load datasg.,; || load datass.sq
|| load datag,.s; || load data;g.,s
|| load datag.,s || load datay.-

Let the effective address (EA) be the sum (RA|0)+(RB).
Bits 0:7 of the doubleword in storage addressed by EA
are loaded into RTgg.63. Bits 8:15 of the doubleword in
storage addressed by EA are loaded into RT,g.55. Bits
16:23 of the doubleword in storage addressed by EA
are loaded into RT 4q.47. Bits 24:31 of the doubleword in
storage addressed by EA are loaded into RT35.39. Bits
32:39 of the doubleword in storage addressed by EA
are loaded into RTy4.31. Bits 40:47 of the doubleword in
storage addressed by EA are loaded into RTg.,3. Bits
48:55 of the doubleword in storage addressed by EA
are loaded into RTg.15. Bits 56:63 of the doubleword in
storage addressed by EA are loaded into RTy.7.

Special Registers Altered:
None

if RA = 0 then b « 0

else b « (RA)

EA € b + (RB)

MEM(ER, 8) € (RS)s6.63 || (RS)4g.55
|| (RS)g0:47 || (RS)32.30
|| (RS)24:31 || (RS)16:23
|| (RS)g.15 || (RS)g.7

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)56.63 are stored into bits 0:7 of the
doubleword in storage addressed by EA. (RS),g:55 are
stored into bits 8:15 of the doubleword in storage
addressed by EA. (RS),q:47 are stored into bits 16:23 of
the doubleword in storage addressed by EA. (RS)32:39
are stored into bits 23:31 of the doubleword in storage
addressed by EA. (RS),4:31 are stored into bits 32:39 of
the doubleword in storage addressed by EA. (RS)16:23
are stored into bits 40:47 of the doubleword in storage
addressed by EA. (RS)g.15 are stored into bits 48:55 of
the doubleword in storage addressed by EA. (RS)q.7
are stored into bits 56:63 of the doubleword in storage
addressed by EA.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 61

Version 3.0 B

3.3.6 Fixed-Point Load and Store Multiple Instructions

Load Multiple Word D-form Store Multiple Word D-form
Imw RT,D(RA) stmw RS,D(RA)

46 RT RA D 47 RS RA D
0 6 11 16 31 0 6 11 16 31

if RA = 0 thenb < 0

else b ¢« (RAp)
EA < b + EXTS(D)
r € RT

do while r < 31
GPR(r) « 20 || MEM(EA, 4)
rer+1
EA ¢« EA + 4

Let n = (32-RT). Let the effective address (EA) be the
sum (RA|0)+ D.

n consecutive words starting at EA are loaded into the
low-order 32 bits of GPRs RT through 31. The
high-order 32 bits of these GPRs are set to zero.

If RAis in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode, the system align-
ment error handler is invoked.

Special Registers Altered:
None

if RA = 0 then b « 0

else b « (RA)
EA €« b + EXTS(D)
r € RS

do while r < 31
MEM(EA, 4) € GPR(r)3,.¢3
rée<r+1
EA € EA + 4

Let n = (32-RS). Let the effective address (EA) be the
sum (RA|0)+ D.

n consecutive words starting at EA are stored from the
low-order 32 bits of GPRs RS through 31.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode, the system align-
ment error handler is invoked.

Special Registers Altered:
None

62 Power ISA™ |

Version 3.0 B

3.3.7 Fixed-Point Move Assist Instructions [Phased Out]

The Move Assist instructions allow movement of an
arbitrary sequence of bytes from storage to registers or
from registers to storage without concern for alignment.
These instructions can be used for a short move
between arbitrary storage locations or to initiate a long
move between unaligned storage fields.

The Move Assist instructions have preferred forms; see
Section 1.9.1, “Preferred Instruction Forms” on
page 23. In the preferred forms, register usage satisfies
the following rules.

B RS=4o0r5
B RT=4o0r5
W |ast register loaded/stored < 12

For some implementations, using GPR 4 for RS and RT
may result in slightly faster execution than using GPR
5.

Chapter 3. Fixed-Point Facility 63

Version 3.0 B

Load String Word Immediate X-form Load String Word Indexed X-form
Iswi RT,RA,NB Iswx RT,RA,RB

31 RT RA NB 597 / 31 RT RA RB 533 /
0 6 11 16 21 31 0 6 11 16 21 31

if RA = 0 then EA « 0

else EA < (RA)
if NB = 0 then n « 32
else n < NB

r €« RT -1

1€ 32

do whilen > 0
if 1 = 32 then
r < r+ 1 (mod 32)
GPR(r) < 0
GPR(r)i.i,7 < MEM(EA, 1)
ie1i+8
if 1 = 64 then i « 32
EA € EA + 1
ne<n-1

Let the effective address (EA) be (RA|O). Let n = NB if
NB=0, n = 32 if NB=0; n is the number of bytes to load.
Let nr=CEIL(n/4); nr is the number of registers to
receive data.

n consecutive bytes starting at EA are loaded into
GPRs RT through RT+nr-1. Data are loaded into the
low-order four bytes of each GPR; the high-order four
bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR O if
required. If the low-order four bytes of register RT+nr-1
are only partially filled, the unfilled low-order byte(s) of
that register are set to 0.

If RAis in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode, the system align-
ment error handler is invoked.

Special Registers Altered:
None

if RA = 0 then b « 0
else b « (RA)
EA < b + (RB)
n € XERg7.63
r € RT -1
i€ 32
RT ¢ undefined
do whilen > 0
if 1 = 32 then
r < r+ 1 (mod 32)

GPR(r) < 0

GPR(r) ;1,7 € MEM(EA, 1)
ie1+8

if 1 = 64 then 1 « 32
EA € EA + 1

ne<n-1

Let the effective address (EA) be the sum
(RAJO)+ (RB). Let n=XERs57.63; n is the number of bytes
to load. Let nr=CEIL(n/4); nr is the number of registers
to receive data.

If n>0, n consecutive bytes starting at EA are loaded
into GPRs RT through RT+nr-1. Data are loaded into
the low-order four bytes of each GPR; the high-order
four bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR O if
required. If the low-order four bytes of register RT+nr-1
are only partially filled, the unfilled low-order byte(s) of
that register are set to 0.

If n=0, the contents of register RT are undefined.

If RA or RB is in the range of registers to be loaded,
including the case in which RA=0, the instruction is
treated as if the instruction form were invalid. If RT=RA
or RT=RB, the instruction form is invalid.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode and n>0, the sys-
tem alignment error handler is invoked.

Special Registers Altered:
None

64 Power ISA™ |

Version 3.0 B

Store String Word Immediate X-form Store String Word Indexed X-form
stswi RS,RA,NB stswx RS,RA,RB

31 RS RA NB 725 / 31 RS RA RB 661 /
0 6 11 16 21 31 0 6 11 16 21 31

if RA = 0 then EA « 0

else EA < (RA)
if NB = 0 then n « 32
else n < NB

r €« RS -1

1€ 32

do whilen > 0
if 1 =32 thenr €« r + 1 (mod 32)
MEM(EA, 1) € GPR(Y);,i.7
iei+8
if 1 = 64 then 1 « 32
EA € EA + 1
ne<n-1

Let the effective address (EA) be (RA|0). Let n = NB if
NB=0, n = 32 if NB=0; n is the number of bytes to store.
Let nr =CEIL(n/4); nr is the number of registers to sup-
ply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr-1. Data are stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR O if
required.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode, the system align-
ment error handler is invoked.

Special Registers Altered:
None

if RA = 0 then b « 0
else b « (RA)
EA < b + (RB)
n € XERg7.63
r € RS -1
i€ 32
do whilen > 0
if 1 =32 thenr ¢ r + 1 (mod 32)
MEM(EA, 1) € GPR(r);.i.,7
ie1+8
if 1 = 64 then 1 « 32
EA € EA + 1
ne<n-1

Let the effective address (EA) be the sum
(RA|0)+ (RB). Let n = XERsg7.63; N is the number of
bytes to store. Let nr = CEIL(n/4); nr is the number of
registers to supply data.

If n>0, n consecutive bytes starting at EA are stored
from GPRs RS through RS+nr-1. Data are stored from
the low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR O if
required.

If n=0, no bytes are stored.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode and n>0, the sys-
tem alignment error handler is invoked.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 65

Version 3.0 B

3.3.8 Other Fixed-Point Instructions

The remainder of the fixed-point instructions use the
contents of the General Purpose Registers (GPRSs) as
source operands, and place results into GPRs, into the
Fixed-Point Exception Register (XER), and into Condi-
tion Register fields. In addition, the Trap instructions
test the contents of a GPR or XER bit, invoking the sys-
tem trap handler if the result of the specified test is true.

These instructions treat the source operands as signed
integers unless the instruction is explicitly identified as
performing an unsigned operation.

The X-form and XO-form instructions with Rc=1, and
the D-form instructions addic., andi., and andis., set
the first three bits of CR Field 0 to characterize the
result placed into the target register. In 64-bit mode,

these bits are set by signed comparison of the result to
zero. In 32-bit mode, these bits are set by signed com-
parison of the low-order 32 bits of the result to zero.

Unless otherwise noted and when appropriate, when
CR Field 0 and the XER are set they reflect the value
placed into the target register.

Programming Note

Instructions with the OE bit set or that set CA and
CA32 may execute slowly or may prevent the exe-
cution of subsequent instructions until the instruc-
tion has completed.

66 Power ISA™ |

Version 3.0 B

3.3.9 Fixed-Point Arithmetic Instructions

The XO-form Arithmetic instructions with Rc=1, and the
D-form Arithmetic instruction addic., set the first three
bits of CR Field 0 as described in Section 3.3.8, “Other
Fixed-Point Instructions”.

addic, addic., subfic, addc, subfc, adde, subfe,
addme, subfme, addze, and subfze always set CA, to
reflect the carry out of bit 0 in 64-bit mode and out of bit
32 in 32-bit mode. These instructions also always set
CA32 to reflect the carry out of bit 32. The XO-form
Arithmetic instructions set SO, OV, and OV32 when
OE=1 to reflect overflow of the result. Except for the
Multiply Low and Divide instructions, the setting of SO
and OV is mode-dependent, and reflects overflow of
the 64-bit result in 64-bit mode and overflow of the
low-order 32-bit result in 32-bit mode, while OV32
reflects overflow of the low-order 32-bit result indepen-
dent of the mode. For XO-form Multiply Low and Divide
instructions, the setting of SO, OV, and OV32 is
mode-independent, and reflects overflow of the 64-bit
result for mulld, divd, divde, divdu and divdeu, and
overflow of the low-order 32-bit result for mullw, divw,
divwe, divwu, and divweu.

Programming Note

Notice that CR Field 0 may not reflect the “true”
(infinitely precise) result if overflow occurs.

Extended mnemonics for addition and
subtraction

Several extended mnemonics are provided that use the
Add Immediate and Add Immediate Shifted instructions
to load an immediate value or an address into a target
register. Some of these are shown as examples with
the two instructions.

The Power ISA supplies Subtract From instructions,
which subtract the second operand from the third. A set
of extended mnemonics is provided that use the more
“normal” order, in which the third operand is subtracted
from the second, with the third operand being either an
immediate field or a register. Some of these are shown
as examples with the appropriate Add and Subtract
From instructions.

See Appendix C for additional extended mnemonics.

Add Immediate D-form Add Immediate Shifted D-form
addi RT,RA,SI addis RT,RA,SI

14 RT RA] 15 RT RA SI
(0] 6 11 16 31 0 6 11 16 31

if RA = 0 then RT ¢ EXTS(SI)
else RT ¢« (RA) + EXTS(SI)

The sum (RA|0) + Sl is placed into register RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate:

Extended: Equivalent to:

li Rx,value addi Rx,0,value
la Rx,disp(Ry) addi Rx,Ry,disp
subi Rx,Ry,value addi Rx,Ry,-value

—— Programming Note
addi, addis, add, and subf are the preferred
instructions for addition and subtraction, because
they set few status bits.

Notice that addi and addis use the value 0, not the
contents of GPR 0, if RA=0.

if RA = 0 then RT ¢« EXTS(SI || ®0)
else RT ¢« (RA) + EXTS(SI || 0)

The sum (RA|0) + (SI || 0x0000) is placed into register
RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate
Shifted:

Extended: Equivalent to:
lis Rx,value addis Rx,0,value
subis Rx,Ry,value addis Rx,Ry,-value

Chapter 3. Fixed-Point Facility 67

Version 3.0 B

Add PC Immediate Shifted DX-form
addpcis RT,D

0 6 11 16 26 31
‘ 19 ‘ RT ‘ d1 ‘ do ‘ 2 ‘d2|

D « do||di]|d2
RT ¢ NIA + EXTS(D || f0)

The sum of NIA + (D || 0x0000) is placed into register
RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add PC Immedi-
ate Shifted:

Extended: Equivalent to:
Inia Rx addpcis Rx,0
subpcis Rx,value addpcis Rx,-value

68 Power ISA™ |

Version 3.0 B

Add XO-form Subtract From XO-form
add RT,RA,RB (OE=0 Rc=0) subf RT,RA,RB (OE=0 Rc=0)
add. RT,RA,RB (OE=0 Rc=1) subf. RT,RA,RB (OE=0 Rc=1)
addo RT,RA,RB (OE=1 Rc=0) subfo RT,RA,RB (OE=1 Rc=0)
addo. RT,RA,RB (OE=1Rc=1) subfo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB [OE| 266 |Rc 31 RT RA RB |[OE| 40 Rc
(6] 6 11 16 21 (22 31 0 6 11 16 21 |22 31
RT ¢« (RA) + (RB) RT ¢ -(RA) + (RB) + 1

The sum (RA) + (RB) is placed into register RT.
Special Registers Altered:

CRO (if Re=1)

SO OV 0V32 (if OE=1)
Add Immediate Carrying D-form
addic RT,RA,SI

12 RT RA Sl
0 6 11 16 31
RT ¢ (RA) + EXTS(SI)

The sum (RA) + Sl is placed into register RT.

Special Registers Altered:
CA CA32

Extended Mnemonics:
Example of extended mnemonics for Add Immediate

Carrying:

Extended:
subic Rx,Ry,value

Equivalent to:
addic Rx,Ry,-value

The sum —(RA) + (RB) +1 is placed into register RT.

Special Registers Altered:
CRO
SO OV 0V32

Extended Mnemonics:

(if Re=1)
(if OE=1)

Example of extended mnemonics for Subtract From:

Extended:
sub Rx,Ry,Rz

Equivalent to:
subf Rx,Rz,Ry

Add Immediate Carrying and Record

D-form
addic. RT,RA,SI
13 RT RA SI
0 6 11 16 31
RT < (RA) + EXTS(SI)

The sum (RA) + Sl is placed into register RT.

Special Registers Altered:
CRO CA CA32

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying and Record:

Extended:
subic. Rx,Ry,value

Equivalent to:
addic. Rx,Ry,-value

Chapter 3. Fixed-Point Facility 69

Version 3.0 B

Subtract From Immediate Carrying
D-form

subfic RT,RA,SI

8 RT RA Sl

0 6 11 16 31

RT « =(RA) + EXTS(SI) + 1
The sum —(RA) + Sl + 1 is placed into register RT.

Special Registers Altered:
CA CA32

Add Carrying XO-form Subtract From Carrying XO-form
addc RT,RA,RB (OE=0 Rc=0) subfc RT,RA,RB (OE=0 Rc=0)
addc. RT,RA,RB (OE=0 Rc=1) subfc. RT,RA,RB (OE=0 Rc=1)
addco RT,RA,RB (OE=1 Rc=0) subfco RT,RA,RB (OE=1 Rc=0)
addco. RT,RA,RB (OE=1Rc=1) subfco. RT,RA,RB (OE=1Rc=1)

31 RT RA RB [OE[] 10 [Rc 31 RT RA RB [OE 8 Rc
0 6 11 16 21 |22 31 0 6 11 16 21 |22 31
RT ¢ (RA) + (RB) RT € 7(RA) + (RB) + 1

The sum (RA) + (RB) is placed into register RT.
Special Registers Altered:

CA CA32
CRO (if Re=1)
SO OV 0V32 (if OE=1)

The sum —(RA) + (RB) + 1 is placed into register RT.

Special Registers Altered:

CA CA32
CRO (if Re=1)
SO OV 0V32 (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From
Carrying:

Extended:
subc Rx,Ry,Rz

Equivalent to:
subfc Rx,Rz,Ry

70 Power ISA™ |

Version 3.0 B

Add Extended XO-form Subtract From Extended XO-form
adde RT,RA,RB (OE=0 Rc=0) subfe RT,RA,RB (OE=0 Rc=0)
adde. RT,RA,RB (OE=0 Rc=1) subfe. RT,RA,RB (OE=0 Rc=1)
addeo RT,RA,RB (OE=1 Rc=0) subfeo RT,RA,RB (OE=1 Rc=0)
addeo. RT,RA,RB (OE=1 Rc=1) subfeo. RT,RA,RB (OE=1 Rc=1)
31 RT RA RB [OE| 138 |[Rc 31 RT RA RB [OE[136 [Rc
(6] 6 11 16 21 (22 31 0 6 11 16 21 |22 31

RT « (RA) + (RB) + CA
The sum (RA) + (RB) + CAis placed into register RT.
Special Registers Altered:

CA CA32
CRO (if Rc=1)
SO OV 0v32 (if OE=1)
Add to Minus One Extended XO-form
addme RT,RA (OE=0 Rc=0)
addme. RT,RA (OE=0 Rc=1)
addmeo RT,RA (OE=1 Rc=0)
addmeo. RT,RA (OE=1Rc=1)
31 RT RA /Il |OE| 234 |Rc
0 6 11 16 21 |22 31

RT ¢ -1 (RA) + (RB) + CA
The sum —(RA) + (RB) + CAis placed into register RT.

Special Registers Altered:
CA CA32
CRO (if Rc=1)
SO OV 0V32 (if OE=1)

Subtract From Minus One Extended

RT « (RA) + CA -1
The sum (RA) + CA + %41 is placed into register RT.

Special Registers Altered:
CA CA32
CRO (if Rc=1)
SO OV 0v32 (if OE=1)

XO-form
subfme RT,RA (OE=0 Rc=0)
subfme. RT,RA (OE=0 Rc=1)
subfmeo RT,RA (OE=1 Rc=0)
subfmeo. RT,RA (OE=1 Rc=1)

31 RT RA /I |OE| 232 Rc
0 6 11 16 21 |22 31

RT ¢ =(RA) + CA - 1
The sum =(RA) + CA + 41 is placed into register RT.

Special Registers Altered:
CA CA32
CRO (if Rc=1)
SO OV 0V32 (if OE=1)

Chapter 3. Fixed-Point Facility 71

Version 3.0 B

Add Extended using alternate carry bit
Z23-form

addex RT,RA,RB,CY

31 RT RA RB |CY 170 /
0 6 11 16 21 |23 31]

if CY=0 then RT « (RA) + (RB) + OV

For CY=0, the sum (RA) + (RB) + OV is placed into regis-
ter RT.

For CY=0, OV is set to 1 if there is a carry out of bit O of
the sum in 64-bit mode or there is a carry out of bit 32
of the sum in 32-bit mode, and set to O otherwise.
OV32is set to 1 if there is a carry out of bit 32 bit of the
sum.

CY=1, CY=2, and CY=3 are reserved.

Special Registers Altered:
oV 0v32 (if CY=0)

Programming Note

An addc-equivalent instruction using OV is not pro-
vided. An equivalent capability can be emulated by
first initializing OV to 0, then using addex. OV can
be initialized to 0 using subfo, subtracting any
operand from itself.

Subtract From Zero Extended XO-form
subfze RT,RA (OE=0 Rc=0)
subfze. RT,RA (OE=0 Rc=1)
subfzeo RT,RA (OE=1 Rc=0)
subfzeo. RT,RA (OE=1 Rc=1)

31 RT RA /Il |OE| 200 |Rc
0 6 11 16 21 |22 31
RT ¢« -1(RA) + CA

The sum —(RA) + CAis placed into register RT.
Special Registers Altered:

CA CA32
CRO (if Re=1)
SO OV 0V32 (if OE=1)

— Programming Note

The setting of CA and CA32 by the Add and Sub-
tract From instructions, including the Extended ver-
sions thereof, is mode-dependent. If a sequence of
these instructions is used to perform extended-pre-
cision addition or subtraction, the same mode
should be used throughout the sequence.

Add to Zero Extended XO-form Negate XO-form
addze RT,RA (OE=0 Rc=0) neg RT,RA (OE=0 Rc=0)
addze. RT,RA (OE=0 Rc=1) neg. RT,RA (OE=0 Rc=1)
addzeo RT,RA (OE=1 Rc=0) nego RT,RA (OE=1 Rc=0)
addzeo. RT,RA (OE=1 Rc=1) nego. RT,RA (OE=1 Rc=1)

31 RT RA " OE 202 Rc 31 RT RA 1 OE 104 Rc
0 6 11 16 21 |22 31 0 6 11 16 21 |22 31
RT « (RA) + CA RT ¢ 7(RA) + 1

The sum (RA) + CA s placed into register RT.

Special Registers Altered:

CA CA32
CRO (if Rc=1)
SO OV 0V32 (if OE=1)

The sum =(RA) + 1 is placed into register RT.

If the processor is in 64-bit mode and register RA con-
tains the most negative 64-bit number (0x8000_
0000_0000_0000), the result is the most negative num-
ber and, if OE=1, OV and OV32 are set to 1. Similarly, if
the processor is in 32-bit mode and (RA)35.63 contain
the most negative 32-bit number (0x8000_0000), the
low-order 32 bits of the result contain the most negative
32-bit number and, if OE=1, OV and OV32 are set to 1.

Special Registers Altered:
CRO
SO OV 0V32

(if Re=1)
(if OE=1)

72 Power ISA™ |

Version 3.0 B

Multiply Low Immediate D-form
mulli RT,RA,SI

7 RT RA S
0 6 11 16 31

prodg,157 € (RA) x EXTS(SI)
RT ¢ prodes. 127

The 64-bit first operand is (RA). The 64-bit second
operand is the sign-extended value of the Sl field. The
low-order 64 bits of the 128-bit product of the operands
are placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
None

Multiply Low Word XO-form
mullw RT,RA,RB (OE=0 Rc=0)
mullw. RT,RA,RB (OE=0 Rc=1)
mullwo RT,RA,RB (OE=1 Rc=0)
mullwo. RT,RA,RB (OE=1 Rc=1)
31 RT RA RB |OE 235 Rc
0 6 11 16 21 |22 31

RT « (RA)33.63 X (RB)3a.63

The 32-bit operands are the low-order 32 bits of RA
and of RB. The 64-bit product of the operands is placed
into register RT.

If OE=1 then OV and OV32 are set to 1 if the product
cannot be represented in 32 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Rc=1)
SO OV 0V32 (if OE=1)

— Programming Note

Multiply High Word XO-form
mulhw RT,RA,RB (Rc=0)
mulhw. RT,RA,RB (Rc=1)

31 RT RA RB [/ 75 Rc
0 6 11 16 21 22 31

prody.e3 € (RA)35.63 X (RB)35.63

RT33.63 € Prodp. sy

RTg.3; € undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit product

of the operands are placed into RT3,.63. The contents
of RTq.31 are undefined.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)

Multiply High Word Unsigned XO-form
mulhwu RT,RA,RB (Rc=0)
mulhwu. RT,RARB (Rc=1)

31 RT RA RB [/ 11 Rc
0 6 11 16 21 22 31

For mulli and mullw, the low-order 32 bits of the
product are the correct 32-bit product for 32-bit
mode.

For mulli and mulld, the low-order 64 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 64-bit integers.
For mulli and mullw, the low-order 32 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 32-bit integers.

prody.e3 € (RA)35.63 X (RB)33.63
RT32.63 € Prodp.s;
RTy.37 € undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit product
of the operands are placed into RT3,.63. The contents
of RTq.3; are undefined.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field O are set by signed comparison of the
result to zero.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)

Chapter 3. Fixed-Point Facility 73

Version 3.0 B

Divide Word XO-form Divide Word Unsigned XO-form
divw RT,RA,RB (OE=0 Rc=0) divwu RT,RA,RB (OE=0 Rc=0)
divw. RT,RA,RB (OE=0 Rc=1) divwu. RT,RA,RB (OE=0 Rc=1)
divwo RT,RA,RB (OE=1 Rc=0) divwuo RT,RA,RB (OE=1 Rc=0)
divwo. RT,RA,RB (OE=1 Rc=1) divwuo. RT,RA,RB (OE=1 Rc=1)
31 RT RA RB [OE[] 491 [Rc 31 RT RA RB [OE| 459 [Rc
0 6 11 16 21 (22 31 0 6 11 16 21 22 31

dividendg.3; € (RR)33.63

divisorg.3; € (RB)3j.63

RT35.43 € dividend + divisor

RTy.37 € undefined

The 32-bit dividend is (RA)30.g3. The 32-bit divisor is
(RB)32.63- The 32-bit quotient is placed into RT35.63.
The contents of RT.3; are undefined. The remainder is
not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) +r

where 0 < r < |divisor| if the dividend is nonnegative,
and -|divisor| < r < 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000 0000 + -1

<anything> + 0
then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of CR

Field 0. In these cases, if OE=1 then OV and OV32 are
setto 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV 0v32 (if OE=1)

—— Programming Note

The 32-bit signed remainder of dividing (RA)z2.63
by (RB)3,.63 can be computed as follows, except in
the case that (RA)32:63 = —231 and (RB)32:63 =-1.

divw RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotientxdivisor
subf RT,RT,RA # RT = remainder

dividendp.3; € (RR)35.¢3
divisorg.3; € (RB)35 .63
RT35.43 ¢ dividend + divisor
RTg.3; € undefined

The 32 bit dividend is (RA)35.63. The 32-bit divisor is
(RB)32.63. The 32-bit quotient is placed into RT3,.63.
The contents of RTy.3; are undefined. The remainder is
not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient x divisor) +r
where 0 <r < divisor.

If an attempt is made to perform the division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In this case, if OE=1 then OV and OV32 are set
to 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV 0V32 (if OE=1)

— Programming Note

The 32-bit unsigned remainder of dividing (RA)3;-63
by (RB)3,.63 Can be computed as follows.

divwu RT,RA,RB
mullw RT,RT,RB
subf RT,RT,RA

RT = quotient
RT = quotientxdivisor
RT = remainder

74 Power ISA™ |

Version 3.0 B

Divide Word Extended XO-form Divide Word Extended Unsigned XO-form
divwe RT,RA,RB (OE=0 Rc=0) divweu RT,RA,RB (OE=0 Rc=0)
divwe. RT,RA,RB (OE=0 Rc=1) divweu. RT,RA,RB (OE=0 Rc=1)
divweo RT,RA,RB (OE=1 Rc=0) divweuo RT,RA,RB (OE=1 Rc=0)
divweo. RT,RA,RB (OE=1 Rc=1) divweuo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB [OE[427 [Rc 31 RT RA RB [OE[395 [Rc
0 6 11 16 21 (22 31 0 6 11 16 21 22 31

dividendy,e3 © (RA)3p.63 || 20
divisorg.3; € (RB)3j.63
RT35.43 € dividend + divisor
RTy.37 € undefined

The 64-bit dividend is (RA)3p.63 || 320. The 32-bit divisor
is (RB)35.63. If the quotient can be represented in 32
bits, it is placed into RT3,.63. The contents of RTg.3; are
undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) +r

where 0 < r < |divisor| if the dividend is nonnegative,
and -|divisor| < r < 0 if the dividend is negative.

If the quotient cannot be represented in 32 bits, or if an
attempt is made to perform the division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV and OV32 are
setto 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV 0v32 (if OE=1)

dividendg,e3 © (RA)3p.63 || %0
divisorg.3; € (RB)35.63

RT35.43 ¢ dividend + divisor
RTg.3; € undefined

The 64-hit dividend is (RA)35.63 || 320. The 32-bit divisor
is (RB)35.63. If the quotient can be represented in 32
bits, it is placed into RT3;.63. The contents of RT.3; are
undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient x divisor) +r
where 0 <r < divisor.

If (RA) > (RB), or if an attempt is made to perform the
division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV and OV32 are
setto 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV 0vV32 (if OE=1)

Chapter 3. Fixed-Point Facility 75

Version 3.0 B

Programming Note

Unsigned long division of a 64-bit dividend contained in
two 32-bit registers by a 32-bit divisor can be computed
as follows. The algorithm is shown first, followed by
Assembler code that implements the algorithm. The
dividend is Dh || DI, the divisor is Dv, and the quotient
and remainder are Q and R respectively, where these
variables and all intermediate variables represent
unsigned 32-bit integers. It is assumed that Dv > Dh,
and that assigning a value to an intermediate variable
assigns the low-order 32 bits of the value and ignores
any higher-order bits of the value. (In both the algorithm
and the Assembler code, “r1” and “r2” refer to “remain-
der 1” and “remainder 2”, rather than to GPRs 1 and 2.)

Algorithm:

3. gl « divweu Dh, Dv

4. rl «-(ql xDv) # remainder of step 1

divide operation

(see Note 1)

g2 < divwu DI, Dv

6. r2 «Dl- (g2 x Dv) # remainder of step 2
divide operation

o

7. Qegl+g2

Rerl+r2

9. if(R<r2)|(R=>Dv)then # (see Note 2)
Q « Q+1 #increment quotient
R < R - Dv # decrement rem’der

©

Assembler Code:

Dh in r4, D1 in r5
Dv in r6

divweu 1r3,r4,r6 # ql

divwu r7,r5,16 # q2

mullw 1r8,r3,r6 # -rl = gl * Dv

mullw r0,r7,r6 # g2 * Dv

subf rl0,r0,r5 # r2 =Dl - (g2 * Dv)

add r3,r3,r7 #0=ql + q2

subf r4,r8,rl0 #R=rl+ 12

cmplw r4,rl0 #R<r2?

blt *4+12 # must adjust Q and R if yes
cmplw 14, r6 # R 2=Dv ?

blt *412 # must adjust Q and R if yes
addi r3,r3,1 #Q0=0+1

subf rd,r6,rd #R =R - Dv

Quotient in r3
Remainder in r4

Notes:

1. The remainder is Dh || 320 - (q1 x Dv). Because the
remainder must be less than Dv and Dv < 232, the
remainder is representable in 32 bits. Because the
low-order 32 bits of Dh || 320 are 0s, the remainder
is therefore equal to the low-order 32 bits of -(q1 x
Dv). Thus assigning -(q1 x Dv) to r1 yields the cor-
rect remainder.

2. Risless than r2 (and also less than rl) if and only
if the addition at step 6 carried out of 32 bits — i.e.,
if and only if the correct sum could not be repre-
sented in 32 bits — in which case the correct sum
is necessarily greater than Dv.

3. For additional information see the book Hacker's
Delight, by Henry S. Warren, Jr., as potentially
amended at the web site http://www.hackersde-
light.org.

76 Power ISA™ |

Version 3.0 B

Modulo Signed Word X-form

modsw RT,RA,RB

Modulo Unsigned Word X-form

moduw RT,RA,RB

31 RT RA RB 779

0 6 1 16 21 31

31 RT RA RB 267

0 6 u 16 21 31

dividendy.3; < (RA)3p:63
divisorg:3 < (RB)gp:63-
RT32:63 « dividend % divisor
RTg-31 < undefined

The 32-bit dividend is (RA)35.63. The 32-bit divisor is
(RB)32:63- The 32-bit quotient is placed into RT35.63.
The contents of RTg.3; are undefined. The quotient is
not supplied as a result.

Both operands and the remainder are interpreted as
signed integers. The remainder is the unigue signed
integer that satisfies

remainder = dividend - (quotient x divisor)

where 0 < remainder < |divisor] if the dividend is
nonnegative, and -|divisor] < remainder < 0 if the
dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000 % -1
<anything> % 0

then the contents of register RT are undefined.

Special Registers Altered:
None

dividendy.3; < (RA)3:63
divisorg.y < (RB)3:63
RT39-63 < dividend % divisor
RTO:31 < undefined

The 32-bit dividend is (RA)3.3. The 32-bit divisor is
(RB)30.63- The 32-bit quotient is placed into RT3,.63.
The contents of RTq.3; are undefined. The quotient is
not supplied as a result.

Both operands and the remainder are interpreted as
unsigned integers. The remainder is the unique signed
integer that satisfies

remainder = dividend - (quotient x divisor)
where 0 < remainder < divisor.
If an attempt is made to perform any of the divisions
<anything> % 0
then the contents of register RT are undefined.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 77

Version 3.0 B

Deliver A Random Number X-form
darn RT,L

31 RT 7 L 1/ 755 /
(6] 6 11 13|14 (16 21 31

RT ¢ random(L)

A random number is placed into register RT in a format
selected by L as shown in the following table. The
value OXFFFFFFFF_FFFFFFFF indicates an error con-
dition. For L=0, the random number range is
0:0xFFFFFFFF. For L=1 and L=2, the random number
range is 0:0xFFFFFFFF_FFFFFFFE.

— Programming Note

The random number generator provided by this
instruction is NIST SP800-90B and SP800-90C
compliant to the extent possible given the com-
pleteness of the standards at the time the hardware
is designed. The random number generator pro-
vides a minimum of 0.5 bits of entropy per bit.

L Format

0 %20 || CRNg:31
1 CRNo:63

2 RRNg.g3

3 reserved

Format above is for non-error conditions.
OXFFFFFFFF_FFFFFFFF for error conditions.
CRN = conditioned random number

RRN = raw random number

A raw random number is unconditioned noise source
output. A conditioned random number has been pro-

cessed by hardware to reduce bias.

Special Registers Altered:
none

—— Programming Note

32-bit software running in an environment that does
not preserve the high-order 32 bits of GPRs across
invocations of the system error handler, signal han-
dlers, event-based branch handlers, etc. may use
the L=0 variant of darn and interpret the value
OXFFFFFFFF to indicate an error condition. The
fact that the error condition includes the valid value
0x00000000_FFFFFFFF together with the true
error value OXFFFFFFFF_FFFFFFFF is not a prob-
lem.

— Programming Note

When the error value is obtained, software is
expected to repeat the operation. If a non-error
value has not been obtained after several attempts,
a software random number generation method
should be used. The recommended number of
attempts may be implementation specific. In the
absence of other guidance, ten attempts should be

adequate.

78 Power ISA™ |

Version 3.0 B

3.3.9.1 64-bit Fixed-Point Arithmetic Instructions

Multiply Low Doubleword XO-form Multiply High Doubleword XO-form

mulld RT,RA,RB (OE=0 Rc=0) mulhd RT,RA,RB (Rc=0)

mulld. RT,RA,RB (OE=0 Rc=1) mulhd. RT,RA,RB (Re=1)

mulldo RT,RA,RB (OE=1 Rc=0)

mulldo. RT,RA,RB (OE=1 Rc=1) 31 RT RA RB [/ 73 Rc

0 6 11 16 2122 31

31 RT RA RB [OE| 233 [Rc

0 6 11 16 21 |22 31 prod0:127 < (RA) x (RB)

prody.157 € (RA) x (RB)
RT € prodgs.127

The 64-bit operands are (RA) and (RB). The low-order

64 bits of the 128-bit product of the operands are
placed into register RT.

If OE=1 then OV and OV32 are set to 1 if the product
cannot be represented in 64 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Rc=1)
SO OV 0v32

RT ¢ prody.es

The 64-bit operands are (RA) and (RB). The high-order
64 bits of the 128-bit product of the operands are
placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Rc=1)

Multiply High Doubleword Unsignhed

Programming Note
The XO-form Multiply instructions may execute
faster on some implementations if RB contains the
operand having the smaller absolute value.

XO-form
. _ mulhdu RT,RA,RB (Rc=0)
(if OB=1) mulhdu. RT,RARB (Rc=1)
31 RT | RA | RB |/ 9 Rc

0 6 11 16 21 |22 31

prody.q157 € (RA) x (RB)
RT ¢ prody.es3

The 64-bit operands are (RA) and (RB). The high-order
64 bits of the 128-bit product of the operands are
placed into register RT.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero.

Special Registers Altered:
CRO (if Rc=1)

Chapter 3. Fixed-Point Facility 79

Version 3.0 B

Multiply-Add High Doubleword VA-form

maddhd RT,RA.RB,RC

4 RT RA RB RC 48
0 6 u 16 21 26 31

prodp:127 < (RA) x (RB)
SlMg.1p7 < prod + EXTS(RC)
RT « SuMp- 63

The 64-bit operands are (RA), (RB), and (RC). The
128-bit product of the operands (RA) and (RB) is
added to (RC). The high-order 64 bits of the 128-bit
sum are placed into register RT.

All three operands and the result are interpreted as
signed integers.

Special Registers Altered:
None

Multiply-Add High Doubleword Unsigned
VA-form

maddhdu RT,RA.RB,RC

4 RT RA RB RC 49
0 6 un 16 21 26 31

prodo.1p7 < (RA) x (RB)
Sumg.1p7 ¢ prod + EXTZ(RC)
RT « Sum0:63

The 64-bit operands are (RA), (RB), and (RC). The
128-bit product of the operands (RA) and (RB) is
added to (RC). The high-order 64 bits of the 128-bit
sum are placed into register RT.

All three operands and the result are interpreted as
unsigned integers.

Special Registers Altered:
None

Multiply-Add Low Doubleword VA-form

maddld RT,RA.RB,RC

4 RT RA RB RC 51

0 6 un 16 21 26 31

prodg.1p7 < (RA) x (RB)
SuMmg-1p7 ¢ prod + EXTS(RC)
RT « SUm64:127

The 64-bit operands are (RA), (RB), and (RC). The
128-bit product of the operands (RA) and (RB) is
added to (RC). The low-order 64 bits of the 128-bit
sum are placed into register RT.

All three operands and the result are interpreted as
signed integers.

Special Registers Altered:
None

80 Power ISA™ |

Version 3.0 B

Divide Doubleword XO-form Divide Doubleword Unsigned XO-form
divd RT,RA,RB (OE=0 Rc=0) divdu RT,RA,RB (OE=0 Rc=0)
divd. RT,RA,RB (OE=0 Rc=1) divdu. RT,RA,RB (OE=0 Rc=1)
divdo RT,RA,RB (OE=1 Rc=0) divduo RT,RA,RB (OE=1 Rc=0)
divdo. RT,RA,RB (OE=1 Rc=1) divduo. RT,RA,RB (OE=1 Rc=1)
31 RT RA RB [OE[489 [Rc 31 RT RA RB [OE| 457 [Rc
0 6 11 16 21 (22 31 0 6 11 16 21 22 31

dividendy.g3 < (RA)
divisory.eg3 ¢ (RB)
RT ¢ dividend + divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient is placed into register RT. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) +r

where 0 < r < |divisor| if the dividend is nonnegative,
and -|divisor| < r < 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000_0000_0000 + -1
<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV and OV32 are
setto 1.

Special Registers Altered:
CRO
SO OV 0v32

(if Re=1)
(if OE=1)

—— Programming Note

The 64-bit signed remainder of dividing (RA) by
(RB) can be computed as follows, except in the
case that (RA) = -2%% and (RB) = -1.

divd RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotientxdivisor
subf RT,RT,RA # RT = remainder

dividendy,q3 ¢ (RA)
divisory.g3 ¢ (RB)
RT ¢ dividend + divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient is placed into register RT. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient x divisor) +r

where 0 <r < divisor.

If an attempt is made to perform the division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In this case, if OE=1 then OV and OV32 are set
to 1.

Special Registers Altered:
CRO
SO OV 0v32

(if Re=1)
(if OE=1)

— Programming Note

The 64-bit unsigned remainder of dividing (RA) by
(RB) can be computed as follows.

divdu RT,RA,RB
mulld RT,RT,RB
subf RT,RT,RA

RT = quotient
RT = quotientxdivisor
RT = remainder

Chapter 3. Fixed-Point Facility 81

Version 3.0 B

Divide Doubleword Extended XO-form
divde RT,RA,RB (OE=0 Rc=0)
divde. RT,RA,RB (OE=0 Rc=1)
divdeo RT,RA,RB (OE=1 Rc=0)
divdeo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB [OE| 425 |[Rc
(6] 6 11 16 21 |22 31
dividendy,;5, € (RB) || %0

divisory.eg3 ¢ (RB)
RT ¢ dividend + divisor

The 128-bit dividend is (RA) || 640. The 64-bit divisor is
(RB). If the quotient can be represented in 64 bits, it is
placed into register RT. The remainder is not supplied
as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) +r

where 0 < r < |divisor| if the dividend is nonnegative,
and -|divisor| < r < 0 if the dividend is negative.

If the quotient cannot be represented in 64 bits, or if an
attempt is made to perform the division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV and OV32 are
setto 1.

Special Registers Altered:
CRO (if Rc=1)
SO OV 0v32 (if OE=1)

Divide Doubleword Extended Unsigned

XO-form
divdeu RT,RA,RB (OE=0 Rc=0)
divdeu. RT,RA,RB (OE=0 Rc=1)
divdeuo RT,RA,RB (OE=1 Rc=0)
divdeuo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB [OE[393 [Rc
0 6 11 16 21 22 31
dividendy. 5, ¢ (RA) || ®%0

divisory.g3 ¢ (RB)
RT ¢ dividend + divisor

The 128-bit dividend is (RA) || 640. The 64-bit divisor is
(RB). If the quotient can be represented in 64 bits, it is
placed into register RT. The remainder is not supplied
as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient x divisor) +r
where 0 < r < divisor.
If (RA) > (RB), or if an attempt is made to perform the
division
<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV and OV32 are
setto 1.

Special Registers Altered:
CRO (if Rc=1)
SO OV 0V32 (if OE=1)

— Programming Note

Unsigned long division of a 128-bit dividend con-
tained in two 64-bit registers by a 64-bit divisor can
be accomplished using the technique described in
the Programming Note with the divweu instruction
description: divd[e]Ju would be used instead of
divw[e]u (and cmpld instead of cmplw, etc.).

82 Power ISA™ |

Version 3.0 B

Modulo Signed Doubleword X-form

Modulo Unsigned Doubleword X-form

modsd RT,RA,RB modud RT,RA,RB
31 RT RA RB 77 31 RT RA RB 265
0 6 1 16 21 31] 0 6 il 16 21 31
dividend < (RA) dividend < (RA)
divisor < (RB) divisor < (RB)
RT « dividend % divisor RT « dividend % divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit remainder is placed into register RT. The
quotient is not supplied as a result.

Both operands and the remainder are interpreted as
signed integers. The remainder is the unique signed
integer that satisfies

remainder = dividend - (quotient x divisor)

where 0 < remainder < |divisor] if the dividend is
nonnegative, and -|divisor| < remainder < 0 if the
dividend is negative.

If an attempt is made to perform any of the divisions

<anything> % 0
0x8000_0000_0000_0000 % -1

then the contents of register RT are undefined.

Special Registers Altered:
None

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit remainder is placed into register RT. The
quotient is not supplied as a result.
Both operands and the remainder are interpreted as
unsigned integers. The remainder is the unique signed
integer that satisfies

remainder = dividend - (quotient x divisor)
where 0 < remainder < divisor.
If an attempt is made to perform any of the divisions

<anything> % 0

then the contents of register RT are undefined.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 83

Version 3.0 B

3.3.10 Fixed-Point Compare Instructions

The fixed-point Compare instructions compare the con-
tents of register RA with (1) the sign-extended value of
the Sl field, (2) the zero-extended value of the Ul field,
or (3) the contents of register RB. The comparison is
signed for cmpi and cmp, and unsigned for cmpli and
cmpl.

The L field controls whether the operands are treated
as 64-bit or 32-bit quantities, as follows:

L Operand length
0 32-bit operands
1 64-bit operands

When the operands are treated as 32-bit signed quanti-
ties, bit 32 of the register (RA or RB) is the sign bit.

The Compare instructions set one bit in the leftmost
three bits of the designated CR field to 1, and the other
two to 0. XERgq is copied to bit 3 of the designated CR
field.

The CR field is set as follows

Bit Name Description

0 LT (RA) < Sl or (RB) (signed comparison)
(RA) <Y Ul or (RB) (unsigned comparison)

1 GT (RA) > Sl or (RB) (signed comparison)
(RA) >Y Ul or (RB) (unsigned comparison)

2 EQ (RA)=SI, Ul or(RB)

3 SO Summary Overflow from the XER

Extended mnemonics for compares

A set of extended mnemonics is provided so that com-
pares can be coded with the operand length as part of
the mnemonic rather than as a numeric operand. Some
of these are shown as examples with the Compare
instructions. See Appendix C for additional extended
mnemonics.

84 Power ISA™ |

Version 3.0 B

Compare Immediate D-form Compare X-form
cmpi BF,L,RA,SI cmp BF,L,RA,RB

1 BF [/[L] RA Sl 31 BF [/[L] RA RB 0 /
0 6 911011 16 31 0 6 911011 16 21 31

if L = 0 then a ¢ EXTS((RA);,.65)
else a < (RA)

if a < EXTS(SI) then ¢ ¢ 0b100

else if a > EXTS(SI) then ¢ ¢ 0b010

else c € 0b001

CR4xpr+32:4xpr+35 € C || XERgg

The contents of register RA ((RA)32.¢3 Sign-extended to
64 bits if L=0) are compared with the sign-extended
value of the SI field, treating the operands as signed
integers. The result of the comparison is placed into CR
field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Imme-
diate:

Extended: Equivalent to:
cmpdi Rx,value cmpi 0,1,Rx,value
cmpwi cr3,Rx,value cmpi 3,0,Rx,value

if L = 0 then a ¢« EXTS((RA);5.¢35)
b ¢ EXTS((RB)35.¢3)
else a ¢ (RA)
b < (RB)
if a < b then ¢ € 0b100
else if a > b then ¢ ¢« 0b010
else c € 0b001

CR4xprs+32:4xBF+35 € C || XERgo

The contents of register RA ((RA)3,.63 if L=0) are com-
pared with the contents of register RB ((RB)35.63 if
L=0), treating the operands as signed integers. The
result of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare:

Extended: Equivalent to:
cmpd Rx,Ry cmp 0,1,Rx,Ry
cmpw cr3,Rx,Ry cmp 3,0,Rx,Ry

Chapter 3. Fixed-Point Facility 85

Version 3.0 B

Compare Logical Immediate D-form Compare Logical X-form
cmpli BF,L,RA,Ul cmpl BF,L,RA,RB
10 BF |/|L| RA Ul 31 BF |/|L| RA RB 32 /
0 6 9|10f11 16 31 0 6 o |10 [11 16 21 31
if L= 0 then a € 320 || (RA)3p.¢3 if L = 0 then a « 220 || (RB)3,.¢3
else a ¢ (RA) b« %0 || (RB)3;.63
if a <" (*%0 || UI) then ¢ ¢ 0b100 else a € (RA)
else if a >" (*®0 || UI) then ¢ € 0b010 b « (RB)
else c € 0b001 if a <" b then ¢ « 0b100
CRaxprs32:axere3s < C || XERgo else if a >" b then ¢ « 0b010
The contents of register RA ((RA) zero-extended else ¢ © Obool
9 32:63, CRyxpF+32:4xBF+35 € C || XERgg

to 64 bits if L=0) are compared with *°0 || Ul, treating
the operands as unsigned integers. The result of the
comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Logical
Immediate:

Extended: Equivalent to:
cmpldi Rx,value cmpli 0,1,Rx,value
cmplwi cr3,Rx,value cmpli 3,0,Rx,value

The contents of register RA ((RA)3,.63 if L=0) are com-
pared with the contents of register RB ((RB)35.63 if
L=0), treating the operands as unsigned integers. The
result of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Logi-
cal:

Extended: Equivalent to:
cmpld Rx,Ry cmpl 0,1,Rx,Ry
cmplw cr3,Rx,Ry cmpl 3,0,Rx,Ry

86 Power ISA™ |

Version 3.0 B

| 3.3.10.1 Character-Type Compare Instructions

Compare Ranged Byte X-form

cmprb BF,L,RA,RB
31 BF |[/|L RA RB 192 [
0 6 9 (10]11 16 21 31

srcl < EXTZ((RA)5663)

src2thi « EXTZ((RB)gp-30)
src2llo < EXTZ((RB)49:47)
src22hi «— EXTZ((RB)g.55)
src22lo «— EXTZ((RB)s5:63)

if L=0 then
in_range < (src22lo < srcl) & (srcl < src22hi)
else
in_range <« ((src2llo < srcl) & (srcl < src2thi)) |
((src22lo < srel) & (srel < src22hi))

CRA><BF+32 <« 0b0
CRyxgre33 < in_range
CRAXBF+34 <« 0b0
CR4XBF+35 <« 0b0

Let srcl be the unsigned integer value in bits 56:63 of
register RA.

Let src21hi be the unsigned integer value in bits 32:39
of register RB.

Let src21lo be the unsigned integer value in bits 40:47
of register RB.

Let src22hi be the unsigned integer value in bits 48:55
of register RB.

Let src22lo be the unsigned integer value in bits 56:63
of register RB.

Let x be considered “in range” of y:z if the value x is
greater than or equal to the value y and the value x is
less than or equal to the value z.

When L=0, the value in_range is set to 1 if srcl is in
range of src22lo:src22hi. Otherwise, the value
in_range is set to O.

When L=1, the value in_range is set to 1 if either srcl
is in range of src2llo:src2lhi, or srcl is in range of
src22lo:src22hi. Otherwise, the value in_range is set
to 0.

CR field BF is set to the value 0b0 concatenated with
in_range concatenated with 0b00.

Special Registers Altered:
CR field BF

— Programming Note

cmprb is useful for implementing character typing
functions such as isalpha(), isdigit(), isupper(),
and islower() that are implemented using one or
two range compares of the character.

A single-range compare can be implemented with
an addi to load the upper and lower bounds in the
range, such as isdigit().

addi rRNG, 0,0x3930 ; loads ASCII values for “9”
; and “0” into rRNG

cmprb crTGT,0,rCHAR,rRNG ; perform range compare
; sets CR field TGT to
; indicate in range

A combination of addi-addis can be used to set up
2 ranges, such as for isalpha().

addi rRNG,0,0x7A61 ; loads ASCII values for “z’
and “a’ into rRNG

addis rRNG,rRNG,0x5A41 ; appends ASCII values for “Z°

;and “A” into rRNG

; perform range compare on

; Character in rCHAR,
setting CR field TGT to
indicate in range

cmprb crTGT,1,rCHAR, rRNG

Chapter 3. Fixed-Point Facility 87

Version 3.0 B

Compare Equal Byte X-form
cmpeqgb BF,RA,RB

31 BF | /I RA RB 224
0 6 9 |u 16 21

31

srcl < GPR[RA].bit[56:63]

match « (SrCl = (RB)00:07) I
(srel = (RB)gg:15) |
(srel = (RB)ge:29) |
(srel = (RB)2a-31) |
(srel = (RB)3p:30) |
(srel = (RB)go:47) |
(srcl = (RB)yg:55) |
(srcl = (RB)sg-63)

CR4XBF+3Z <« 0b0
CRAXBF+33 <« match
CRA><BF+34 <« 0b0
CR4XBF+35 <« 0b0

CR field BF is set to indicate if the contents of bits 56:63

of register RA are equal to the contents of any of the
bytes in register RB.

Results are undefined in 32-bit mode.

Special Registers Altered:
CR field BF

8

—— Programming Note

cmpeqgb is useful for implementing character
typing functions such as isspace() that are
implemented by comparing the character to 1 or
more values.

A function such as isspace() can be implemented
by loading the 6 byte codes corresponding to
characters considered as whitespace (HT, LF, VT,
FF, CR, and SP) and using the cmpeb to compare
the subject character to those 6 values to
determine if any match occurs.

ldx rSPC,WS_CHARS ; TSPC = 0x0909_090A_0BOC_0D20
; load rSPC with all 6 ASCII
values corresponding to
; white spaces
cmpegb 2,crl,rCHAR,rSPC ; perform match compare on
character in rCHAR with
byte values in rSPC

In this case, the byte code for HT (0x09) was
replicated to fill the all 8 bytes to avoid a potential
miscompare.

88 Power ISA™ |

Version 3.0 B

3.3.11 Fixed-Point Trap Instructions

The Trap instructions are provided to test for a speci-
fied set of conditions. If any of the conditions tested by
a Trap instruction are met, the system trap handler is
invoked. If none of the tested conditions are met,
instruction execution continues normally.

The contents of register RA are compared with either
the sign-extended value of the Sl field or the contents
of register RB, depending on the Trap instruction. For
tdi and td, the entire contents of RA (and RB) partici-
pate in the comparison; for twi and tw, only the con-
tents of the low-order 32 bits of RA (and RB) participate
in the comparison.

This comparison results in five conditions which are
ANDed with TO. If the result is not O the system trap
handler is invoked. These conditions are as follows.

TO Bit ANDed with Condition

Less Than, using signed comparison
Greater Than, using signed comparison
Equal

Less Than, using unsigned comparison
Greater Than, using unsigned comparison

A WNPFO

Extended mnemonics for traps

A set of extended mnemonics is provided so that traps
can be coded with the condition as part of the mne-
monic rather than as a numeric operand. Some of
these are shown as examples with the Trap instruc-
tions. See Appendix C for additional extended mne-
monics.

Chapter 3. Fixed-Point Facility 89

Version 3.0 B

Trap Word Immediate D-form Trap Word X-form
twi TO,RA,SI tw TO,RA,RB

3 TO RA S 31 TO RA RB 4 /
0 6 11 16 31 0 6 11 16 21 31

a € EXTS((RA) 35,63

)
if (a < EXTS(SI)) & TO, then TRAP
if (a > EXTS(SI)) & TO; then TRAP
if (a = EXTS(SI)) & TO, then TRAP
if (a <" EXTS(SI)) & TO; then TRAP
if (a >" EXTS(SI)) & TO, then TRAP

The contents of RAgz,.g3 are compared with the
sign-extended value of the Sl field. If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap han-
dler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book IlI).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word
Immediate:

Extended: Equivalent to:
twgti Rx,value twi 8,Rx,value
twllei Rx,value twi 6,Rx,value

a « EXTS((RA)3,,43)

b € EXTS((RB)35.43)

if (a < b) & TO, then TRAP
if (a > b) & TO; then TRAP
if (a = b) & TO, then TRAP
if (a <" b) & TO; then TRAP
if (a > b) & TO, then TRAP

u

The contents of RA3,.63 are compared with the con-
tents of RB3,.63. If any bit in the TO field is set to 1 and
its corresponding condition is met by the result of the
comparison, the system trap handler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word:

Extended: Equivalent to:
tweq Rx,Ry tw 4,Rx,Ry
twige Rx,Ry tw 5,Rx,Ry
tr