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Abstract—The open source RISC-V ISA has been quickly
gaining momentum. This paper presents Xuantie-910, an industry
leading 64-bit high performance embedded RISC-V processor
from Alibaba T-Head division. It is fully based on the RV64GCV
instruction set and it features custom extensions to arithmetic
operation, bit manipulation, load and store, TLB and cache
operations. It also implements the 0.7.1 stable release of RISC-
V vector extension specification for high efficiency vector pro-
cessing. Xuantie-910 supports multi-core multi-cluster SMP with
cache coherence. Each cluster contains 1 to 4 core(s) capable of
booting the Linux operating system. Each single core utilizes the
state-of-the-art 12-stage deep pipeline, out-of-order, multi-issue
superscalar architecture, achieving a maximum clock frequency
of 2.5 GHz in the typical process, voltage and temperature
condition in a TSMC 12nm FinFET process technology. Each
single core with the vector execution unit costs an area of 0.8 mm2

(excluding the L2 cache). The toolchain is enhanced significantly
to support the vector extension and custom extensions. Through
hardware and toolchain co-optimization, to date Xuantie-910
delivers the highest performance (in terms of IPC, speed, and
power efficiency) for a number of industrial control flow and data
computing benchmarks, when compared with its predecessors in
the RISC-V family. Xuantie-910 FPGA implementation has been
deployed in the data centers of Alibaba Cloud, for application-
specific acceleration (e.g., blockchain transaction). The ASIC
deployment at low-cost SoC applications, such as IoT endpoints
and edge computing, is planned to facilitate Alibaba’s end-to-end
and cloud-to-edge computing infrastructure.

Index Terms—RISC-V, multi-core, cache, memory architec-
tures, out of order, vector, extension

I. INTRODUCTION

Cloud computing and IoT applications are fueling the wave

of semiconductor research and development. The demand for

low-power and cost-effective CPUs is ever increasing. The

RISC-V is very attractive at this point in time, because: i) as an
alternative to closed and costly ISAs, the open and free ISA of

RISC-V accelerates processor innovation through open stan-

dard collaboration; ii) its scalability, extensibility, and mod-
ularity enable processor customization and optimization for

This paper is part of the Industry Track of ISCA 2020’s program.

domain-specific workload (e.g., machine learning accelerators,

network processing, security enclave, storage controllers and

supercomputing), thereby boosting processing efficiency and

reducing design cost; iii) RISC-V is becoming a mainline plat-
form in Unix/Linux OS. The toolchains like GNU/GCC/GDB

and LLVM are getting mature, further improving software

experience and driving down software development cost.

Admittedly, compared with the X86, ARM, MIPS [16]–

[18], PowerPC, SPARC [11], [20], [21], [23], [30], openRISC

[14], [24], [26] and other ISAs under the hood of popular

GPUs and DSPs, RISC-V is still in its infancy. We see many

RISC-V efforts have been making inroads, some of which are

highlighted below:

• Academic work - The UC Berkeley released the in-order
Rocket core, the out-of-order core BOOM and the open-
source design generator tool [9], [10]. Both Rocket and
BOOM are capable of booting Linux. ETH Zurich and

Università di Bologna offered three flavors of RISC-V

cores in the PULP platform [4] - RI5CY (32-bit, 4-stage
pipeline), Zero-riscy (32-bit, 2-stage pipeline) and Ariane
(64-bit, 6-stage pipeline) [32]. Also, IIT-Madras has been

working on a series of Shakti RISC-V processors, from a
3-stage pipeline in-order core to an out-of-order multiple

threading core at a target operating frequency of 1.5-2.5

GHz [5], [13].

• Industrial work - For many years nVIDIA has been
using RISC-V as the Falcon controllers in the GPUs
[8]. Besides, chip vendors such as SiFive, Microsemi,

Alibaba T-Head, Andes, Codasip offer a range of silicon-

proven 32-bit and 64-bit embedded RISC-V IPs. Re-

cently, Western Digital open-sourced the SweRVTM Core

[25], which is an industry-quality 32-bit, 2-way super-

scalar, 9-stage pipeline core. This power-efficient design

reaches over 1.0 GHz operating frequency in a TSMC

28nm CMOS process technology. With a performance of

up to 5.0 CoreMarks/MHz (based on internal simulations)
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and small footprint, it offers compelling capabilities for

embedded devices for data-intensive edge applications,

such as storage controllers, industrial IoT, real-time ana-

lytics in surveillance systems and other smart systems.

Along the RISC-V performance spectrum, most of the

existing cores are in the microcontroller class [12], [15],

[19], [33]. Some prior arts extended RISC-V to domain-

specific accelerators/coprocessors [22], [27]–[29]. However,

as of today very few options are available at the 64-bit high

performance end.
The Xuantie product series from Alibaba T-Head are high-

performance embedded computing cores based on RISC-V

architecture. The T-head Semiconductor (or Pingtouge Semi-

conductor) is the business entity of Alibaba Group specializing

in IC chip designs, with the primary goal of developing the

next-generation of cloud integrated chip architecture, data cen-

ters and embedded IoT chip products. The codename Xuantie
refers to a ”heavy sword made from dark iron” in Chinese

tales. The intention of this work is NOT to compete with any

non-RISC-V cores on the market, but rather contribute to the

high-end 64-bit RISC-V architecture through open-source col-

laboration. To date, only the FPGA implementation has been

deployed in the data centers of Alibaba Cloud, for application-

specific acceleration by taking advantage of the custom exten-

sions and the vector extensions. The initial FPGA deployment

scale is limited to several hundreds. The implementation on the

Xilinx VU9P FPGA runs at 200 MHz frequency in Linux OS.

Taking blockchain transaction acceleration as an example, in

terms of per-core performance, the FPGA edition is still 20%

higher than the x86 64 Intel Xeon Platinum 8163 CPU that

runs at 2.5 GHz in ubuntu16.04 OS. A cost-down ASIC edition

has been taped out and the chip is expected in July, 2020. It

is projected to run at a frequency of 2.0 - 2.5 GHz, resulting

in 12-15X higher performance than the x86 64 Intel Xeon

Platinum 8163 CPU counterpart. In addition to internal use,

Alibaba has been promoting Xuantie core IP series to facilitate
external customers for edge computing applications, such

as AI, edge servers, industrial control and advanced driver-

assistance systems (ADAS). Alibaba is also in the preparation

process of open-source release of Xuantie. By the end of 2022,
a total volume of 15 million units is expected. The full product

portfolio can be viewed at Alibaba T-head semiconductor

division’s website at https://www.t-head.cn/product.
Prior to our work, the SiFive U74 core [6] was the world’s

highest performance RISC-V application processor. It is capa-

ble of achieving up to 5.1 CoreMark/MHz, an accomplishment

on par with the ARM Cortex-A55 core [1]. XT-910 (abbr.
for Xuantie-910) is a 12nm 64-bit RISC-V processor with
16 cores clocked at up to 2.5 GHz frequency. It can perform

out-of-order execution and has a triple-issue 12-stage pipeline.

XT-910 implements the RV64GCV, meaning that it supports
the base 64-bit RISC-V ISA (RV64G) and supports compact

16-bit-wide instructions (C) as well as the standard 32-bit

wide instructions. It features RISC-V vector extension. It also

includes more than 50 non-standard instructions to accelerate

various tasks. The toolchain has also been largely optimized

to improve the efficiency and performance. XT-910 processor
reaches 7.1 CoreMark/MHz, which is 40% faster than U74.
The remainder of this paper is organized as follows. Section

II gives an overview to the XT-910 architecture. Section III
and section IV introduce the instruction fetch unit and the

execution core, respectively. Section V discusses the memory

sub-system in detail, from the hardware implementation to

the memory management in Linux OS. Section VI briefly

goes over the multi-cluster and multi-core SMP. Section VII

and VIII present the vector instruction extension and non-

standard instruction extensions that boost the performance of

domain-specific applications. Section IX shows the optimized

compilation tool chain. The experimental results on various

benchmarks are provided in section X. Finally, section XI

draws conclusion of the paper.

II. XT-910 ARCHITECTURE OVERVIEW

XT-910 is fully in compliance with the RISC-V RV64GCV
instruction set specification [31]. It supports the standard user

(U), supervisor (S), and machine (M) privilege modes, as

shown in Fig. 1. The RV64GCV designation means that XT-
910 implements i) the base 64-bit RISC-V ISA (RV64G); ii)
compact 16-bit-wide instructions (C) as well as the regular

32-bit-wide instructions, and iii) the vector operations (V),
whose standard is still in development. In addition, XT-910 has
more than 50 non-standard instructions to accelerate various

domain-specific tasks.

Fig. 1: The U, S, M privilege modes.

XT-910 exploits a homogeneous multi-cluster architecture.
As shown in Fig. 2, a cluster is composed of up to 4 cores.

Each core supports a 32/64 KB L1 instruction cache and a

32/64 KB data cache. Each cluster has a shared, inclusive

8/16-way associated L2 cache, which has up to 8 MB and

supports both ECC and parity check. Exclusive memory access

instructions are also supported. XT-910 includes a standard 8-
16 region PMP (Physical Memory Protection) and a SV39

MMU, which is compatible with the RISC-V Linux specifi-

cation. The LSU supports unaligned memory data access. It

also incorporates standard CLint and PLIC multi-core interrupt

controllers, timers and debuggers, performance monitors and

I/O slave interfaces. The supported core configurations are

listed in Table I.

To improve the performance, XT-910 features RISC-V vec-
tor extension and a series of non-standard custom extensions

including extensions to arithmetic, bit manipulation, load &

store, and TLB & cache operations. In addition, there are
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Fig. 2: The diagram of the XT-910 multi-core cluster (4-core
configuration).

TABLE I: XT-910 core configurations.

feature configuration
Core Number per Cluster 1, 2, 4
L1 Data Cache 32KB, 64KB
L1 Instruction Cache 32KB, 64KB
L2 Cache Size 256KB ∼ 8MB
Vector Extension yes / no

extensions for the MMU to support page-based memory at-

tribute management and for the interrupt controller to support

permission control. All the extensions are supported by our

compilation toolchains. Through hardware configurations, the

non-standard extensions can be disabled, allowing XT-910 to
operate in a mode fully compatible with the standard RISC-V.

Fig. 3 shows the exemplar floorplan of a single-core and

dual-cores. The performance from post-layout simulation is

summarized in Table II. In a TSMC 12nm FinFET process

technology, the implemented silicon areas are 0.8 mm2 and 0.6

mm2 for a single-core with and without the vector execution

unit, excluding the L2 cache. When operating at 0.8V Vdd,

the core reaches over 2.0 GHz frequency using LVT standard

cell library and ULVT SRAMs. If we use ULVT standard cells

and operate at 1.0V Vdd (i.e., voltage boosting mode), a 2.5

GHz main frequency can be achieved. In another experiment

with a 7nm FinFET technology, the frequency of a single core

can reach 2.8 GHz.

TABLE II: XT-910 core performance in a 12nm FinFET.

Operating frequency 2.0 GHza ∼ 2.5 GHzb (TT 85◦)
Silicon area per core 0.6 (without VEC) / 0.8 (with VEC) mm2

Dynamic power ∼100 μW/MHz per corec (TT 85◦)
a Use LVT 6T-turbo standard cell, ULVT SRAM, 0.8V Vdd
b Use 30% ULVT standard cell, ULVT SRAM, 1.0V Vdd
c Configuration: 32/64KB L1$, 256/512KB L2$, without VEC

The pipeline of the XT-910 core is shown in Fig. 4. The
”frontend” of the pipeline consists of 7 stages (i.e., IF ∼

(a) The layout of a single-core, with vector exe-
cution unit and 512KB L2 cache.

(b) The layout of dual-cores.

Fig. 3: The layout of a single-core and dual-cores.

Fig. 4: 12-stage pipeline in XT-910 core.
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RF). The instruction fetch unit (IFU) uses a hybrid predictor,

which makes predictions of branch direction, branch address,

function return address and indirect jump address. The

instruction decoding unit (IDU) can decode 3 instructions

simultaneously and can rename up to 4 instructions using

physical registers. The out-of-order issue engine can issue up

to 8 instructions. The ”backend” of the pipeline has multiple

execution units, including two single-cycle ALUs, one single-

cycle branch jump unit, one dual-issue out-of-order load &

store unit, two scalar floating point units and two vector

execution units. The multi-cycle ALU unit and the division

unit share one pipe; the integer multiplication units and the

two single-cycle ALUs share a pipe. The LSU supports

unaligned memory data access, and supports multi-mode

multi-stream prefetching to increase data access bandwidth.

More details about the IFU, the execution core, the memory

subsystem and the memory management unit (MMU) will be

discussed in the following sessions.

III. INSTRUCTION FETCH UNIT

As illustrated in Fig. 5, the IFU in XT-910 is divided into
three pipeline stages:

• Instruction Fetch (IF): access L1 instruction cache to
obtain instructions, convert virtual addresses to physical

addresses and process the first-stage branch jump. A

maximum of 128 bits of instruction line can be fetched

from the L1 cache in a single cycle.

• Instruction Pack (IP): pack and pre-process the instruc-
tions, process the second-stage of branch jump, and refill

lines in case of cache miss. Up to 8 instructions can be

packed. As the subsequent IDU can maximally decode

3 instructions, the throughput of IP will not become the

performance bottleneck.

• Instruction Buffer (IB): the packed instruction is buffered;
up to 3 instructions are sent to the ID pipeline stage, and

the third-stage of jump is processed.

Fig. 5: The XT-910 IFU pipeline.

XT-910 uses the hybrid multi-mode branch prediction to
predict the directions and target addresses of branches, in-

cluding absolute branch, conditional branch, indirect branch,

and function call return. This allows program jumps to be

initiated as early as possible, reducing pipeline bubbles caused

by program flow changes. All instructions prefetched through

branch predictions are cached in the Instruction Buffer (IBUF).

When the branch prediction is correct, the IBUF content is

accumulated. Therefore, even when cache miss occurs, IFU

can still provide sufficient instructions to the subsequent IDU

pipeline stage.

A. Branch Direction Prediction

To improve the instruction fetch efficiency, the IFU strives to

predict the jump direction of conditional branch at the earliest

possible pipeline stages. At the IF stage, a small number of

branches are captured and jumps are processed right away,

so for these branches the delay penalty is reduced to zero.

Most of the conditional branches are captured at the IP stage.

The predication is based on the branch history. The prediction

outcome is stored in multiple memory banks, from which one

data is selected to be final result by a dynamic monitoring

algorithm. To be able to store a large number of prediction

values, the banks are realized in high-density SRAMs.

Because the IF stage has a line width of 128 bits (containing

a maximum of 8 instructions), it is highly likely that the

instructions have conditional branch instructions in each cycle

and the jump of a branch is influenced by the direction of

its previous branch jump. However, due to the large access

latency of SRAM banks, when a memory read happens, the

output value from the SRAM banks (that store the branch

prediction values) must be buffered in the registers first before

being consumed. As a result, after receiving the predicted

value of jump direction for the current branch instruction,

one clock cycle delay occurs if this value is used as the

historical information for the subsequent branch instruction.

In other words, conditional branch instructions at two adjacent

cycles cannot be processed consecutively. To resolve this

issue, XT-910 adopts a branch prediction mechanism based on
prefetching from multi-level buffers. The possible prediction

values of the conditional branch instructions are read out in a

fuzzy matching pattern and then buffered in BUF1 and BUF2.

When a branch is detected, the value in BUF1 is used for

prediction. The associated value from BUF2 moves up to

BUF1 to predict the branch at the next cycle, as shown in

Fig. 6.

This prediction mechanism can also predict multiple branch

instructions in a single cycle. If the 128-bit instruction fetched

in one cycle contains multiple branch instructions, the pre-

diction result of the first branch instruction can be obtained

from BUF1. Based on the result, the prediction result of the

second branch instruction can be obtained from BUF2. With a

higher level of prefetch buffers, more branch instructions can

be predicted at the same time. When misprediction happens,

the error will be corrected only when the branch instruction

reaches the branch jump execution unit, which causes at

least seven clock cycles of performance penalty compared to

executing jump at the IP stage.
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Fig. 6: The branch predictor with 2-level buffer.

B. Branch Target Prediction

The branch predictor only predicts if a branch instruction

requires to jump, but the prediction of the jump address is

also important. Even if a jump is correctly initiated at the

IP stage, a bubble still occurs in the pipeline. When jumps

occur too frequently, the bandwidth of the IFU cannot meet

the demand of the subsequent execution units. To eliminate

the pipeline bubble, the IFU adopts a cascaded branch target

buffer (BTB). The L1 BTB is the main BTB. It has more

than 1K table entries and uses set-associative structure. The

L0 BTB is fully-associative with 16 table entries. At the IF

stage, if the branch instruction hits the L0 BTB, the predicted

address stored in the table will be used as the jump address

to execute a jump immediately, eliminating the bubble in the

pipeline.

The prediction result of the L0 BTB (including the jump

direction and the target address) is confirmed at the IP stage.

The jump direction is checked by the branch predictor, and

the target address is checked by the L1 BTB. In case of L0

BTB misprediction, the target address will be corrected right

away at the IP stage.

Conventionally, the branch prediction result of L1 BTB is

corrected at the late stages of the pipeline. In XT-910, the IFU
checks the L1 BTB target jump address at the IB pipeline

stage. If the L1 BTB generates a misprediction, an immediate

correction is performed.

In most cases, the performance loss caused by a jump

instruction at the IP stage will be hidden by the prefetched

instructions in IBUF. The L0 BTB is intended primarily

for programs whose performance loss cannot be hidden. For

instance, if a program with continuous jumps performs a jump

at the IP stage, it will frequently generate pipeline bubbles. The

number of instructions in the IBUF will be reduced and the

bubbles cannot be hidden. The L0 BTB captures program of

this kind and caches the branches in it. It initiates jumps at the

IF stage to remove the bubbles in the pipeline. Besides, the

IFU also has an indirect branch predictor for indirect branch

instructions. The subroutines call the return stack to predict

the return addresses.

C. Loop Buffer

To facilitate instruction fetch for small loops in programs,

the IFU also has a loop buffer (LBUF), as illustrated in Fig.

7. Software program tends to have loop bodies which contain

a small number of instructions. When executing loops, jumps

occur frequently. If a jump instruction is performed at the

IP stage, many bubbles will be inserted. Moreover, the last

instruction of the current loop cannot be issued together with

the first instruction of the next loop, simply because there is

a jump backwards instruction in between.

The LBUF largely solves such issue. The loop body is

entirely buffered in the LBUF. The last instruction of the

current loop can be issued together with the first instruction of

the next loop to the subsequent pipeline stage. In this way, the

IFU ensures that the maximal number of instructions (i.e., 3

instructions/cycle) are sent to the IDU. The loop body allows

forward branches, so the loop body with if-else structure can
be also accelerated. Another advantage of the LBUF is that the

instruction fetch for loop cases does not require accessing the

L1 instruction cache, thereby reducing the power consumption.

XT-910’s loop buffer has 16 entries. When a context switch
occurs, the loop buffer is flushed.

Fig. 7: The loop buffer (LBUF) accelerates program with

small loops.

IV. EXECUTION CORE

The execution core includes ID, IR, IS, RF, EX1∼EX4,
RT1∼RT2 pipeline stages. The IDU is from the ID to the RF
stages. The ID stage decomposes and decodes instructions. It

splits instruction into micro-instructions based on the attributes

(e.g., instruction type, number of operands, and number of

write-back operations, etc.). Zero-latency decoupling of scalar

and vector instructions is supported.

The IR stage renames operands in GPR, FGPR and VGPR

using physical registers. Register renaming is applied to

scalar integer, floating point and vector registers. Register

renaming not only effectively handles data dependencies, it

also eliminates the use of the costly move instruction. XT-
910 adopts speculative allocation of physical registers. Upon
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the completion of write-back, an instruction retires and the

physical registers are released.

The IS stage performs out-of-order instruction scheduling.

The processor has 8 instruction slots, which are shared by all

the issued instructions. Depending on the available resources

and workload of the execution unit, multiple independent out-

of-order issue queues are loaded. The issue queues use an

Age-Vector based scheduling algorithm to issue instructions to
the shared instruction slots. In addition, the issue queues also

support dynamic load balancing by monitoring the workload

in the pipeline and adjusting the priority in real time.

The EX stage contains 8 pipes, which can process 2

arithmetic operation instructions, 1 branch instruction, 1 load

instruction, 2 store instructions (i.e., the pseudo double store

instructions, as will be discussed later), 2 scalar floating point

and vector instructions in parallel.

The RT stage takes care of instruction write-back and

retirement. The RTU (retirement unit) retires instructions and

releases the physical registers. To ensure the correctness of

program execution, the instructions are retired in order in spite

of the out-of-order execution. Like many high-performance

processors [7], this feature is realized through the re-order

buffer (ROB). The ROB can hold up to 192 instructions.

When an exception occurs on one instruction, the instruction

has to retire and the speculative executions of the following

instructions in the pipe are also flushed, as illustrated in Fig. 8.

Fig. 8: Speculative failure recovery after instruction execution

exception.

V. MEMORY SUB-SYSTEM

Many efforts have been made to enhance the efficiency of

XT-910’s memory sub-system, as discussed below.

A. Dual-issue out-of-order LSU

To date, XT-910 is the only RISC-V processor that support
dual-issue out-of-order LSU. The LSU can process one load

instruction and one store instruction in parallel. The dual-

issue LSU requires dedicated load pipe and store pipe. Each

pipe contains four pipeline stages, namely address generation

(AG), data cache (DC), data alignment (DA), and write-back

(WB), as shown in Fig. 9. At the AG stage, the load and store

instructions generate addresses, access the uTLB, and convert

virtual addresses to physical addresses. At the DC stage, load

and store instructions access the data cache. At the DA stage,

data alignment is completed. Finally, the data is written back

to the physical register file at the WB stage.

Fig. 9: The pipeline stages in the LSU.

The data cache system includes the DATA RAM and the

LD TAG RAM for the load pipe. An additional ST TAG

RAM is added to the store pipe. Executions on the load

and store pipes access their own RAMs. For proper out-of-

order LSU execution, the Load Queue (LQ) and the Store

Queue (SQ) are implemented to keep the order of instructions

and check the address dependencies. When executing a load

instruction, all prior store instructions in the SQ are checked,

and the store instructions with the same address are forwarded.

When executing a store instruction, the LQ is checked. Once

a ”younger” load instruction with the same address is to be

executed earlier, the speculative execution fails and a global

flush is generated. To improve the efficiency of memory

access speculation and reduce the performance loss caused

by speculative failures, XT-910 predicts and tags load/store
instructions that may cause speculative execution failures, so

the execution is blocked by the execution unit to ensure that the

load instruction is not executed ahead of the store instruction.

B. Pseudo double store instructions

To accelerate the execution of store instruction, before being

issued to the queue, the instruction is decomposed into two

micro-operations (μOps), namely the st. addr (which stores the
address portion of the store instruction, for address generation

and cache query) and st. data (which stores the data portion
of the store instruction, for fetching operands). The st. addr
goes from the shared load-store issue queue to the store pipe.

st. data goes from its dedicated st. data issue queue to the
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st. data pipe, accesses the physicial register file and forwards
the results from the execution units. st. addr and st. data are
merged in the write buffer (WB) in the SQ after going through

their own pipes and are written back to the data cache or the

off-chip storage (see Fig. 10). By separating the address and

the data stores, the address generation and cache access can

be performed earlier.

Fig. 10: Independent address and data flows in the LSU.

C. Multi-mode multi-stream data prefetch

For high-performance applications, there exists a large gap

between the memory access bandwidth/latency and the proces-

sor running speed. Although multi-level cache can dwarf the

impact of memory wall, there are still many scenarios where

either data is used very few times or the cache capacity is

insufficient.

XT-910 provide a unique multi-mode and multi-stream data
prefetch approach to enhance the data prefetch capability.

By pattern matching the data streams, XT-910 effectively
prefetches data and backfills the L1 or the L2 cache, and

reduces the probability of processor stall caused by high

memory latency. Two data prefetch modes are supported, as

shown in Fig. 11. One is the global prefetch mode, which

is suitable for simple but continuous data stream. This mode

supports any stride lengths, and the maximum depth of the

prefetch is 64 cache lines. The other is the multi-stream

prefetch mode, which is suitable for complex scenarios. This

mode supports up to 8 data streams with different stride

lengths, and supports prefetch depth of up to 32 cache lines.

The prefetch operation is divided into three steps. The

first step is stride length calculation - a process which finds

the correct pattern from the load instruction addresses. The

second step is prefetch control. It decides the prefetch policy

and evaluate the confidence. Prefetch policy is responsible

for setting the depth of prefetch and dynamically adjusting

the start and stop of prefetch. It prevents overly aggressive

prefetch from contaminating the cache, or overly slow prefetch

from performance degradation. Confidence evaluation deter-

mines whether the prefetch policy being used is accurate or

whether it needs to be modified or abandoned. The last step is

the actual execution of data prefetch. XT-910 supports multi-
stream data prefetch to reduce the performance loss caused by

memory latency. In addition, it supports virtual address cross-

page prefetch. When data is prefetched at the page boundary, a

conversion for the next virtual page is automatically requested.

Fig. 11: Multi-mode multi-stream data prefetch.

Once the physical page address is obtained, data prefetch

resumes.

D. Multi-size multi-level TLBs

The XT-910 core supports multi-size (4K, 2M and 1G) entry
at all levels of TLBs. Each entry of the micro-TLB and the

joint-TLB contains a page-size property. When the micro-TLB

(fully-associated) is accessed, the requested virtual address

(va) is compared with the virtual page number (VPN) in every
micro-TLB entry. If the micro-TLB misses, the missed va is
sent to the joint TLB (jTLB) to find a valid entry.

As illustrated in Fig. 12, the jTLB is 4-way set associative

and can only be accessed by one type of index at one time.

It can be accessed by three kinds of indexes correspondent to

the three different page sizes. It is accessed by the 4K index

firstly, and then the 2M index if the 4K request misses, and

then the 1G index if 2M request misses. The corresponding

entry of jTLB is refilled to micro-TLB on page hit. When all

page size requests are missed, page-table walk is triggered.

Fig. 12: Multi-size multi-level TLBs.
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E. Memory management in Linux OS

To meet the memory management requirements in Linux

OS, XT-910 adds multiple instructions to improve the

consistency of MMUs/cache: i) It can specify the ASID/base
address of page table/virtual address, and can broadcast TLB

maintenance information through the interconnection bus. The

CPU cores and other peripheral IPs on the interconnection

bus can parse the information to maintain their own MMUs.

Compared with the IPI (Inter-Processor Interrupt) scheme,

the maintenance is performed by hardware without software

intervention, hence improving the efficiency. ii) It supports
huge page mapping [3], which is an important feature required

by Linux OS to reduce TLB miss rate. The MMU provides 3

levels table mapping. Each level can be mapped as a leaf table

entry. It can simultaneously meet the Linux 4KB, 2MB, 1GB

different size of huge page requirements. iii) Its ASID width is
increased to 16-bit. The TLB needs to be flushed when ASID

overflows. The test result shows that, the number of TLB

flushes caused by context switch is decreased by almost 10X,

as the 16-bit-wide ASID takes a much longer time to overflow.

VI. THE MULTI-CORE ARCHITECTURE

XT-910 adopts the SMP multi-core architecture. Up to 4
cores are grouped into one CPU cluster and up to 4 CPU

clusters are connected using Ncore (see Fig. 13). The cores
are connected through an internal bus with coherence pro-

tocol. They share an inclusive L2 cache with a maximum

configurable size of 8 MB. The L2 cache supports MOSEI

coherence protocol. A snoop filter that monitors access by the

cores to the shared L2 cache effectively reduces the inter-core

communications.

Fig. 13: The block diagram of multi-core implementation.

VII. VECTOR INSTRUCTION EXTENSION

XT-910 is one of the first commercial processors that adopt
the RISC-V Vector Extension proposal. The vector engine

significantly boosts the performance of vector processing,

especially for AI and machine learning applications.

Compared with traditional fixed-length SIMD instruction

sets (e.g., ARM NEON and Intel SSE/AVX), variable-length

vector instruction set (e.g., ARM SVE and RISC-V Vector

Extension) not only provide more flexible parameter selection

for hardware, but also enhances the portability of upper-layer

software across different hardware platforms. Based on the

0.7.1 stable release version of RISC-V Vector specification,

XT-910 supports the execution of dual-issue out-of-order vec-
tor operation instructions.

XT-910 uses a 64-bit scalar pipeline. According to the
specification, the vector pipeline supports 8-bit to 64-bit vector

integer operations, and half-precision/single-precision/double-

precision floating-point vector operations. Its vector pipeline

consists of multiple identical vector slices. Each vector slice

has a complete 64-bit data path, including a multi-port 64-

bit vector physical register file and two out-of-order vector

floating-point and integer execution pipelines. Each pipeline

supports a single 64-bit integer or double-precision floating-

point operations, or two 32-bit integer or single-precision

floating-point operations. Each vector slice has its independent

registers, forwarding path, and execution data path. Only very

few operations, such as wide, narrow, and permutation, need
to exchange data across slices.
Fig. 14 shows the vector slices based architecture, which

greatly reduces the layout and routing costs caused by the

increasing bit-width. XT-910 can support the operation width
from 64 bits to 1024 bits. However, for deeply pipelined

out-of-order multi-core processors, the maximum bit-width

of load/store access is largely limited by the bus and cache

architecture. Further, a higher bit-width increases the cost of

memory access and exacerbates cache coherence problem. To

balance the bit width ratio of arithmetic-logic operations to

load/store access, two vector slices with 128-bit VLEN and

SLEN are recommended. With this configuration, XT-910 can
generate a total of 256-bit operation results in one clock cycle,

and complete a 128-bit vector load/store operation.

Fig. 14: The pipelined vector operation architecture.

The vector operation instruction itself does not specify the

element format and operation bit width. These vector parame-

ters are set through a configuration instruction (vsetvl/vsetvli).
The parameter configuration instruction only needs to specify

the number of elements to be processed, and the hardware can

determine the specific operation width and number of elements

according to VLMAX. This feature ensures that software

does not need to know the underlying hardware parameters
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but can run on hardware platforms with different computing

bitwidths. However, this is not friendly to deeply pipelined

processor architecture. The vector parameter correlation has

to be inferred from each vector operation instruction and its

preceding parameter configuration instruction, slowing down

the execution of vector operation instruction. To alleviate the

performance loss, XT-910 enables vector parameter prediction
and speculative execution of vector operation, which only

cause speculation failures when the vl changes.
Most vector operations can be completed within 3-4 clock

cycles. Multiplying single and double precision floating point

vectors takes 5 clock cycles. Integer division and floating-point

division take 6 to 25 clock cycles.

VIII. NON-STANDARD INSTRUCTION SET EXTENSION

Targeting at various industrial applications, XT-910 enables
a set of custom non-standard instructions, additional to the

standard RISC-V instructions. The non-standard instruction

extension can be categorized into two groups based on the

purposes - memory access enhancement, and basic arithmetic
operation enhancement.

A. Memory access enhancement

Memory access instructions usually account for a high

proportion in the total number of instructions, so enhancing

memory access instructions can directly benefit the overall per-

formance. By analyzing the mainstream applications running

on RISC-V, we observed that for the basic RISC-V instructions

there is still quite some room for improvement in memory

access related instructions.

First, we support register + register addressing mode, and
support indexed load and store instructions. This type of

instruction extension reduces the usage of the registers for

calculation and reduces the number of instructions for address

generation, thereby effectively accelerating the data access

of a loop body. Second, unsigned extension during address

generation is supported. Otherwise, the basic instruction set

does not support direct unsigned extension from 32-bit data

to 64-bit data, resulting in too many shift instructions.

B. Arithmetic operation enhancement

Domain-specific applications, such as the security

encryption and audio/video codec, present very different

arithmetic requirements. For example, security encryption

algorithms need to perform frequent shift, and, or and
other operations on certain bytes or sections in the data.

Therefore, a series of bit operation instructions, multiplication

instructions, and multiplication and accumulation instructions

have been extended.

IX. THE OPTIMIZED TOOL CHAIN

We release the Comprehensive Integrated Development En-
vironment (CDS) for XT-910, which is an IDE that enables
RISC-V graphical trace, profiling and instruction accurate

simulator with JTAG online debug. GNU’s official compilation

tool collection is fully supported, as shown in Fig. 15. A

snapshot of the profiling tool is shown in Fig. 16.

Fig. 15: The compilation toolchain.

Fig. 16: The XT-910 profiling tool.

The compiler of XT-910 has been co-optimized along with
the hardware architecture, including:

1) RISC-V architecture uses a signed extension when con-

verting 32-bit to 64-bit data type. Because the existing

compilers do not support induction variable optimiza-

tion, index auto-increment and branch jumps occur dur-

ing loop unrolling, largely deteriorating the efficiency.

The XT-910 compiler tool extracts the loop variables
and moves the auto-increment variable and the control

code out of the loop, hence reducing the total number

of the instructions that needs to be executed.
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2) RISC-V architecture designates the global pointer regis-

ter (global pointer) to point to a fixed memory address

during program execution, allowing some variables to

be directly accessed using the load/store instructions by

adding an offset to the global pointer register value.

Usually, to improve the usage of the global pointer, the

compiler will allocate relatively small variables to the

regions that can be accessed by global pointer. However,

when accessing a small variable and a large variable

consecutively, the addresses of these two accesses can be

far apart (i.e., large address offset), resulting in poor data

locality. Our compiler tool deploys an anchor scheme,
which allocates the variables of the same function to a

continuous address space, saves the starting address of

this space to a register and accesses the variables by

adding offset to the register content.

3) While the existing RISC-V compilers do not support

Dead Store Elimination (DSE) optimization, XT-910
compiler tool does support DSE.

X. EXPERIMENTAL RESULTS

A series of industrial benchmarks for embedded CPUs

have been performed to evaluate the performance. One of the

benchmarks is the Coremark, which contains implementations
of the following algorithms: list processing (find and sort),

matrix manipulation (common matrix operations), state ma-

chine (determine if an input stream contains valid numbers),

and CRC (cyclic redundancy check). Such benchmark is only

for core performance evaluation, as it is basically all cache-

hit and it is hardly affected by DDR latency. In Fig. 17, the

performance is compared with various embedded processors.

XT-910 processor reaches 7.1 CoreMark/MHz, which is 40%
faster than SiFive U74 (which is by far the highest performance
RISC-V processor available on market). We saw the news

about the upcoming SiFive U84 processor, but because there
are no official product data by the time submitting this article,

we cannot make comparison without knowing the evaluation

conditions, hardware configuration and software compilation

details. We would be happy to include it as a new reference

point once the information becomes available.

Because there are hardly benchmarking results available

from high performance RISC-V processors of this kind, we

use the ARM Cortex-A73 [2] as our reference. As high-

performance embedded processors, Cortex-A73 and XT-910
have many architectural similarities (e.g., pipeline stages,

instruction issue width, etc.). This allows us to better analyze

and compare the advantages and disadvantages of RISC-V

and ARM at the ISA level. The experimental Cortex-A73

processor is from the Huawei Kirin-970, which uses the
linaro GCC 6.3-2017.02 toolchain. It has 64KB L1 instruction
cache, 64KB L1 data cache, and 2MB L2 cache shared by

the instruction and data. For a fair comparison, XT-910 is
configured for the same L1 & L2 cache sizes and it uses

GCC 8.1 compilation toolchain with -O2 option. A disclaimer
that the benchmarking results are by no means suggesting

XT-910 is up to the perfection of the flagship Cortex-
A73 core. XT-910 has just made its debut, a multi-year open-
collaboration is needed to cover numerous corner cases.

Fig. 17: The CoreMark Scores.

Fig. 18 shows the performance of the EEMBC benchmark,

which is a benchmark for the hardware and software used in

autonomous driving, the Internet of Things, mobile devices,

and other applications.

Fig. 18: The performance of the EEMBC benchmark, nor-

malized to the performance of ARM Cortex-A73.

Similarly, we evaluated the NBench, which is a performance
testing framework for .NET applications. The results are

shown in Fig. 19. Overall, the performance of XT-910 is on
par with the ARM Cortex-A73.

We have run the SPECInt2006 benchmark. SPECInt2006
uses very large programs that frequently incur L2 cache

misses. It factors in core performance, cache size, cache

miss, DDR latency, etc., thereby providing a comprehensive

evaluation on a CPU system. The performance of XT-910
is 6.11 SPECInt/GHz, which is 10% lower than the 6.75

SPECInt/GHz delivered by Cortex-A73.

Compared with the native RISC-V ISA and compiler, the

performance of XT-910 with instruction extensions and opti-
mized compiler has been improved by about 20%, as shown

in Fig. 20. Although we do not show the acceleration of

AI use cases in this paper, it should be noted that XT-910
supports the RISC-V 0.7.1 vector extension and the Cortex-

A73 uses ARM’s NEON technology. Taking 16-bit multiply-
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Fig. 19: The performance of the NBench, normalized to the

performance of ARM Cortex-A73.

accumulate as an example, as far as we know, the Cortex-

A73 supports 8X 16-bit-MAC operation, and the computing

power of XT-910 is 16X 16-bit MACs, so theoretically XT-
910 has a 1X performance improvement over the Cortex-
A73. In addition, XT-910 supports half-precision operation
(which is not supported by Cortex-A73), further widening the

performance gap between them in AI scenarios.

Fig. 20: The performance of XT-910 with instruction ex-
tensions and optimized compiler, normalized to using native

RISC-V ISA and compiler.

Fig. 21 illustrates the impact of data pre-fetch on stream
for the memory subsystem. stream is a set of benchmark that
tests memory access performance and prefetch performance.

The performance is normalized to the performance of scenario

a), where all prefetches on off. Scenario b) only enabled L1
prefetching, the performance increased to 3.8X. Scenario c)
further turned on L2 and TLB prefetching, the performance

improvement goes up to 4.9X. When the prefetch distance was

adjusted from small to large in scenario d), the performance
reached a maximum of 5.4X. Scenario e) turns off TLB
prefetching while other configurations remain the same as

scenario d), and the performance is slightly reduced (by about
2.4%). The experimental data are all from evaluation on

HAPS80-S26 FPGA. Because the access delay of memory

data directly affects the test results, the memory access delay

is adjusted to about 200 CPU clock cycles (by specifying the

bus delay and DDR delay), i.e., the CPU issues a read request

and obtains the data from the bus after 200 CPU cycles. In

the FPGA test, the CPU is running at 60MHz.

Fig. 21: The performance impact of prefetch on the memory

sub-system. a) All prefetches are off; b) L1 prefetch is on, L2
and TLB prefetches are off, and small distance is configured;

c) L1, L2, and TLB prefetches are on, and small distance is
configured; d) L1, L2, and TLB prefetches are on, and large
distance is configured; e) L1 and L2 prefetches are on, TLB
prefetch is off, and large distance is configured.

XI. CONCLUSION

This paper presents XT-910 - a deeply pipelined out-of-
order high performance 64-bit embedded multi-cluster multi-

core RISC-V processor. It is fully based on the RV64GCV

instruction set and features custom extensions to enhance

vector and arithmetic operations, bit manipulation, load &

store, and TLB & cache operations. XT-910 supports multi-
core multi-cluster with cache coherence. Each cluster contains

1 to 4 core(s) capable of booting Linux operating system.

Each single core utilizes the state-of-the-art 12-stage pipeline,

out-of-order, multi-issue superscalar architecture, attaining a

maximum clock frequency of up to 2.5 GHz in the typical

process and temperature condition in a TSMC 12nm FinFET

process technology. Each single core costs an area of 0.8

mm2 and 0.6 mm2, with and without the vector execution

unit (excluding the L2 cache). The toolchain of XT-910 also
has been largely optimized to support the custom extensions.

By hardware and software co-design, to date XT-910 delivers
the highest performance (in terms of IPC, speed and power

efficiency) for a number of industrial control flow and data

computing benchmarks when compared with its predecessors

in the RISC-V family.

Since the official product launch in July, 2019, the FPGA

implementation of XT-910 has been already deployed in the
data centers of Alibaba Cloud, for application-specific ac-

celeration by offloading tasks from servers to FPGAs and

taking advantage of XT-910’s custom extensions and vector
extensions. An ASIC edition has been taped out and the

ASIC deployment will happen after silicon bring-up. Besides

internal use, the IP has been adopted by dozens of external

customers in edge and IoT endpoint computing applications.

We are currently enhancing features like multi-core expansion,

parallel computing and functional safety. Compared with the
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ISA of ARM, the ISA of RISC-V is architecturally more

concise. This reduces the decoding and execution costs of

processor hardware. It also reduces the complexity of the tool

chain. RISC-V ISA is a modular instruction set. Through the

combination of different subsets, the processor can be more

flexible to obtain advantages in power, area and performance

in different application scenarios. While RISC-V ISA’s flexi-

bility and scalability provide unlimited possibilities for open

innovations, many excellent features in ARM (such as bitwise

operation, trace and virtualization) have not yet been finalized

in RISC-V ISA proposals.

The R&D journey of XT-910 convinced the RISC-V com-
munity that, i) as an open source architecture, the RISC-V
architecture not only enables low-power low-cost embedded

MCUs, it is also applicable to high-performance computing.

For a variety of general-purpose applications, the RV64GC-

based XT-910 has reached the performance of commercial
cores in mainstream architectures; ii) the RISC-V vector
extension could also be well suited for AI and machine

learning applications; iii) the potential of RISC-V will not only
be limited to the edge computing. For many applications in

data centers, its flexibility and customizability are beneficial,

especially being the scalable domain-specific accelerators in

the post-Moore’s Law era.

Charles Darwin said, ”It is not the strongest of the species

that survives, nor the most intelligent. It is the one that is most

responsive to change.” We believe the philosophy also applies

to computing architectures. Nonetheless, the evolving RISC-

V architecture is not mature enough in terms of technology

and ecosystems. We have been actively participating in the

RISC-V foundation on the standardization and discussing the

effective custom extensions of XT-910 with the technical sub-
groups. Some of the extensions (such as cache operations)

have already drawn attention and are considered into future

RISC-V standard ISA release. For RISC-V architectures to be

more competitive as compared to other industry’s mainstream

high-performance architectures, the RISC-V community must

maintain the ISA conformity and innovate together through

software and hardware co-design.
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